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Abstract

Recently we accomplish the matrix formulation for the
canonical perturbation theory of the linear betatron cou-
pling resonance in circular accelerators [1, 2]. By merging
the perturbation theory with the matrix formalism, we man-
ifest the symplectic structure of the former theory, and con-
versely derive the analytical representation for the latter.
The formulation for the coupled betatron motion explic-
itly implies that the linear coupling causes the excitation of
skew resonances through nonlinear fields with mid-plane
symmetry [3, 4]. The third order skew coupling resonance
is observed in the SPring-8 storage ring, for example, as the
blow-up of the vertical beam size. For the purpose of study-
ing the impact of the linear coupling on the skew nonlinear
resonance, we investigate the characteristic behavior of the
nonlinear resonance deduced from the matrix formulation
of the perturbation theory.

IMPACT OF LINEAR COUPLING ON
NONLINEAR RESONACE

We consider a nonlinear dynamics in a circular accelera-
tor with small skew quadrupole distortions distributed over
the circumference of a circular accelerator. The Hamilto-
nian describing the system consists of the three parts

H = H0 +H1 +H3, (1)

where H0 is the Hamiltonian of unperturbed linear motion

H0 =
1
2

(
p2

x + p2
y +Gxx

2 +Gyy
2
)
, (2)

with the strengths of the quadrupole field Gx, y giving the
focusing force, and H1 is the perturbing term for linear
coupling

H1 = Kxy, (3)

with the strength of the skew quadrupole field K , and H3

is the normal sextupole potential

H3 =
1
3!
S

(
x3 − 3xy2

)
(4)

with the strength of the sextupole field S. It is clear that,
if it were not for the linear coupling term H1, there is no
skew sextupole resonance. Hence we show that the linear
coupling gives rise to the skew sextuple potential from the
normal one by rotating the coordinate system.
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Linear coupled motion can be solved analytically by the
perturbation treatment [5, 6]. On the other hand, the matrix
formulation for the linear coupled system reveals the sym-
plectic structure [7, 8]. If we merge both the theories, we
can analytically represent the symplectic structure of the
coupled system, which has been accomplished in [1, 2].
The matrix formulation gives the analytical representation
of the symplectic rotation matrix, which converts the coor-
dinate system from the physical one to the normal.

Now consider the linearly coupled system described by
the Hamiltonian H0 + H1. Let the normal coordinates
be �U = (u, pu, v, pv). The matrix formulation gives the
symplectic rotation matrix relating the physical coordinates
�X = (x, px, y, py) to the normal [7, 8]:

�U = T �X, (5)

where

T =
(
τI −T ∗

T τI

)
(6)

with τ2 + Det (T ) = 1. Here I is the 2-by-2 identity
matrix and the symbol ∗ represents the adjoint operation

T ∗ = −ST tS with S =
(

0 1
−1 0

)
. Although the sym-

plectic rotation matrix is given in terms of the transfer ma-
trix, we cannot analytically deduce the dynamical behavior
near the resonance. Using the perturbation theory with the
single resonance approximation, we can solve the equation
of motion analytically [5, 6]. Hence applying the matrix
formulation to the perturbation theory, we derive the an-
alytical representation for the symplectic rotation matrix
[1, 2].

It is well-known that the solution of the unperturbed mo-
tion described by the HamiltonianH0 is given by

z0 (s) = az0ψz (s) + c.c., (7)

pz0 (s) = az0ψ
′
z (s) + c.c., (8)

where ψz for z = x, y are the unperturbed betatron motion

ψz (s) =

√
βz (s)

2
eiφx(s), (9)

with the betatron function βz (s) and the phase φz (s) =∫ s

s0
ds′/βz (s′), and az0 some constants. Allowing the con-

stants az0 to vary, we can approximately solve the equation
of coupled motion near the linear coupling difference reso-
nance (νx − νy ≈ integer) as

z (s) = az (s)ψz (s) + c.c., (10)

pz (s) = az (s)ψ′
z (s) + c.c., (11)
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and

ax (s) = A1e
−2πiν1s/L +A2e

−2πiν2s/L, (12)

ay (s) =
C

2

(
A1

ν2
e2πiν2s/L +

A2

ν1
e2πiν1s/L

)
, (13)

with the integration constants A1,2 and the circumference
L. Furthermore the tune deviation due to the coupling ν 1,2

are given by

ν1,2 =
1
2

(
Δ ±

√
Δ2 + |C|2

)
, (14)

where Δ = νx − νy − q is the distance from the linear
difference resonance with an integer q, and C the coupling
driving term

C =
1
2π

∫ L

0

dsK (s)
√
βx (s)βy (s)

×ei[φx(s)−φy(s)− 2πs
L (νx−νy−q)]. (15)

Using the solution derived by the perturbation theory, we
can give the analytical representation for the symplectic ro-
tation matrix [1, 2]

T =

⎧
⎪⎪⎨

⎪⎪⎩

√
ν1

ν1−ν2

(
I − 1

2ν1
N

− 1
2ν1

N I

)
for Δ ≥ 0

√
−ν2

ν1−ν2

(
I − 1

2ν2
N

− 1
2ν2

N I

)
for Δ < 0

with
N = E−1

x [−Re (C) I + Im (C)S]Ey, (16)

where Re (C) [Im (C)] indicates the real [imaginary] part
of C and Ez is the normalization matrix

Ez =
(

1/
√
βz 0

αz/
√
βz

√
βz

)
. (17)

In order to investigate the higher order resonance dynam-
ics, we should consider the system in the normal coordinate
where the eigen tunes are defined. Applying the transfor-
mation �X = T−1 �U to the third order Hamiltonian H3, we
obtain the sextupole potential in the normal coordinate. Ex-
panding the potential with respect to the coupling driving
term perturbatively, we find the skew sextupole potential
H̃3(1) appearing in the next leading term:

H̃3(1) =
S

4

√
±ν1,2

βxβy (ν1 − ν2)
3

× [
Re (C)

{
βxv

3 − (βx + 2βy)u2v
}

+Im(C)
{
αxβyv

3 − (αyβx + 2αxβy)u2v

+βxβy

(
pvu

2 − puuv − pvv
2
)}]

. (18)

On the other hand, the leading term H̃3(0) is, off course, the
normal sextupole potential. Note that, if it were not for the
linear coupling, there exists no skew sextupole potential.

MEASUREMENTS OF THE NONLINEAR
DIFFERENCE RESONANCE

For the purpose of confirming the validity of the present
treatment, we study the skew nonlinear coupling at the
SPring-8 storage ring, a synchrotron radiation light source
for x-ray experiments. The major beam parameters of the
SPring-8 storage ring are as follows. The beam energy is
8 GeV, and the operation point in user time (40.15, 18.35),
and the natural emittance 3.4 nmrad.

The skew sextupole coupling resonance (2νx − νy ≈
62) is observed at the SPring-8 storage ring. Hence we
investigate the response of the nonlinear resonance to the
strength of the linear coupling resonance C. Varying the
horizontal betatron tune with keeping the vertical one fixed
(νy = 18.35), we perform the tune survey under the two
conditions |C| = 0.0012 and 0.012. The smaller strength
of the linear coupling resonance is achieved by the coupling
correction using the skew quadrupole magnets.
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Figure 1: Tune difference in the vicinity of the linear cou-
pling resonance.

Before investigating the nonlinear resonance, we explain
the status of the linear coupling resonance. Figure 1 shows
the measured data of the difference of the betatron tunes
near the linear coupling resonance (νx−νy ≈ 22). As well-
known, the minimum difference of the betatron tunes gives
the strength of the coupling resonance, and the above men-
tioned values of the coupling strength are thus estimated.
The analytical formulae for the projection beam size de-
rived by the perturbation theory are [1, 2, 5, 6]

σ2
x =

Δ2 + 1
2 |C|2

Δ2 + |C|2 βxε0, (19)

σ2
y =

1
2 |C|2

Δ2 + |C|2βyε0, (20)

where ε0 is the natural emittance. Hence the beam profile,
especially the vertical beam size, is sensitive to the cou-
pling resonance. In Fig. 2 we show the experimental results
of the beam sizes at the tune survey. At the SPring-8 stor-
age ring we measure the beam size by means of the visible
light interferometer [9] and the x-ray imager [10]. The data
detected by the former are represented by the open circles,
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Figure 2: Vertical (left) and horizontal (right) beam sizes in
the vicinity of the linear coupling resonance.

and those by the latter are depicted by the closed ones. The
solid lines reflect the beam sizes expected by the analyt-
ical formula for the two cases of the coupling resonance.
The analytical formulae of the beam sizes well describe the
behavior of the beam profile in the vicinity of the linear
deference resonance except for the sidebands observed in
the case of the smaller coupling. The sidebands are excited
by the synchrotron motion through the chromaticity or the
vertical dispersion at sextupole magnets [11]. Note that the
width of the resonance become narrow corresponding to
the strength of the linear coupling.

Now we review the behavior of the beam sizes near the
skew sextupole resonance shown in Fig. 3. The excitation
of the nonlinear resonance is manifestly enhanced by the
growth of the linear coupling. The global shift of the hor-
izontal beam size is estimated to be the variation of the
horizontal dispersion function. The solid lines represent
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Figure 3: Vertical (left) and horizontal (right) beam sizes in
the vicinity of the skew sextupole resonance.

the beam sizes supposed by the Lorentzian response on
the distance from the resonance as for the linear coupling
resonance described by Eqs. (19) and (20). The stronger
the strength of the linear coupling resonance becomes, the
larger not the width but the peak of the nonlinear resonance
grows.

By inspecting the skew sextupole potential (18), we ex-
pect that the nonlinear coupling resonance is enhanced by
approaching to the linear difference resonance. So we per-
form the tune survey under the different condition with
fixed vertical tune νy = 18.20. This change of the ver-
tical tune reduces the distance of the skew sextupole res-
onance from the linear coupling one from 0.175 to 0.10.
The strength of the nonlinear resonance is then enhanced

by a factor of 1.74. The strength of the linear coupling res-
onance at this tune survey is estimated to be 0.012 same to
the worse case of νy = 18.35.

Figure 4 shows the result of the tune survey for the con-
ditions of the different distances between the linear differ-
ence and the skew sextupole resonances. As expected, the
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Figure 4: Vertical (left) and horizontal (right) beam sizes in
the vicinity of the skew sextupole resonance with different
distances from the linear difference resonance.

resonance excitation of the case νy = 18.2 is stronger than
that of νy = 18.35.

SUMMARY

We elucidate that the linear coupling drives the skew
nonlinear resonance through the normal sextupole mag-
nets. This fact implies that the strength reduction of the
linear coupling resonance leads to the decrease of the non-
linear resonance. This reduction of the nonlinear resonance
is experimentally confirmed at the SPring-8 storage ring.

The linear coupling used to be corrected to reduce the
vertical beam size, which is the figure of merit of the high
brilliance of the light source ring. At the SPring-8 storage
ring the linear coupling correction hardly improves the ver-
tical beam size since the operation point is enough far from
the linear resonance. Nevertheless, the correction of the
linear coupling is still important because of weakening the
nonlinear resonance.
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