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Abstract 
We present theoretical and numerical analyses of 

Cherenkov radiation in bulk anisotropic and dispersive 
metamaterials and in waveguides loaded with these 
materials. Anisotropy and dispersion of both 
permittivity and permeability are taken into account. It 
is shown that the properties exhibited by these materials 
allow the design of detectors with unusual and 
previously unavailable characteristics.  

INTRODUCTION 
Cherenkov radiation (CR) is extensively used for 

detection of charged particles moving at relativistic 
speeds [1]. However, low signal levels and small angles 
of radiation with respect to the particle trajectory 
present limitations on the use of traditional detector 
media. Using modern artificial metamaterials as 
Cherenkov radiators can provide essential advantages 
over conventional media. Metamaterials are artificial 
periodic structures made of small resonating elements 
that are designed to achieve specific electromagnetic 
properties. As long as the periodicity and the size of the 
elements are much smaller than the wavelengths of 
interest, an artificial structure can be described by a 
bulk permittivity and permeability just as natural 
materials. The typical permittivity and permeability 
tensors have the following form [2,3]:  
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where rmre ωω ,  are resonance frequencies, peω  is a 

plasma frequency, and dmde ωω ,  are attenuation 
parameters.  

CHERENKOV RADIATION IN 
UNBOUNDED MEDIA  

In this section we present theoretical results for CR in 
bulk media. A point charge is assumed to be traversing 

the medium along the z-axis with velocity βcV =  (or 
equivalently, in a thin channel through the medium; as 
long as the channel is much smaller than the 
wavelength of interest it does not influence the radiation 
[4]).  

A new method of analysis of the fields of moving 
charges in media with frequency dispersion has been 
developed in the papers [5,6] (for the case of isotropic 
media). The technique is based on the theory of 
functions of a complex variable. This method provides 
new opportunities for both analytic and numerical 
treatments of the fields of moving charges. It can be 
easily extended to the case of an anisotropic dispersive 
medium as well. However, we will describe here some 
energetic characteristics only.  

We will use a typical characteristic to describe 
Cherenkov radiation, namely, the spectral density of 
radiated energy per unit area (as used, for example, for 
the case of isotropic left-handed media [7]). In the case 
of anisotropic dispersive media with tensor permittivity 
and permeability (1), the following approximate 
expressions for the spectral density components are 
obtained:  
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where q  is the charge magnitude, ρ  is  the radial 
distance of a measurement point from the particle 

trajectory, ( )12||
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)(ωs  is defined so that 0)(Im >ωs . Expressions (4) 
were derived assuming 1>>ρs . We have also derived 
the exact formulae for arbitrary ρs . The angle between 
the particle velocity and the vector 

ρωρωω eWeWW zz
ρρρ

+=  (directed along the group 
velocity) is given by the expression 

( )ωεεθ ωωρ ||tan sVWW zW ⊥≈≈ .  

Some results for the dependence of the spectral 

energy density 22
ωρωω WWW z +=  on the frequency 

ω  and radiation direction Wθ  are given in Fig.1. The 
computations were carried out using the exact formulae.  
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In addition to the case of bi-anisotropic medium, we 
considered separately the cases of electric and magnetic  
anisotropies. In the case of dispersive anisotropic 
permittivity only (when 1=μ ), the charge radiates 
backward and the angle of radiation is obtuse (the 
analogous effect for another functional form of )(ωε ⊥  
was considered in [1]). It is important to note that in 
this case there is no threshold for radiation generation. 
With such a structure it is possible to obtain good 
velocity selectivity without a velocity threshold. In the 
case of dispersive anisotropic permeability only 
(when 1=ε ) radiation is typical: the particle radiates 
forward at acute angles, and for a fixed frequency there 
is a radiation velocity threshold ( 1))(Re(2 >⊥ ωμβ ). 
In the case of dispersion and anisotropy in both 
permittivity and permeability (Fig.1) one can observe 
both forward (for peωω > ) and backward radiation (for 

peωω < ).  
The presence of two distinct peaks in the spectral and 

angular distributions can be used for construction of a 
detector with two velocity thresholds. The reverse 
radiation without threshold allows registration of almost 
all moving particles, and simultaneously the forward 
radiation with threshold allows selection of particles 
with the velocity exceeding a set value.  

The frequency and angular distributions in principle 
allow measurement of the charge velocity for very wide 
range of β . However this method may not provide 
enough precision because of errors of measurement of 
angles or frequencies of the radiation maxima. This 
disadvantage can be partially eliminated by use of a 
waveguide loaded with a metamaterial.  

CHERENKOV RADIATION                        
IN A WAVEGUIDE  

The theory of Cherenkov radiation in waveguides 
with different dispersive materials has been discussed in 

a number of papers (see, for example, [1, 4, 7–11]). For 
a demonstration of principal effects in the case of the 
medium model given in (1)–(3), it is sufficient to 
consider a circular waveguide with radius a. We assume 
that the charge moves with a velocity 0>= βcV  along 
the z  axis of the waveguide that coincides with the 
optical axis of the metamaterial. We will omit the 
analytical results and describe some numerical 
examples concerning the behaviour of the fields at the 
wall of the waveguide (Fig. 2-3).  

Examples of the spectra of the fields and the energy 
flow density at the waveguide wall are shown in Fig. 3 
( )0(

jmHφ  are amplitudes of the magnetic field for 

harmonics with mode numbers 2,1=j  and 
,...3,2,1=m ; 0<z  is the region behind the charge at a 

specified time). One can see that the wave field consists 
of two series of modes. The low-frequency modes 
( 1=j ) form the “backward” part of radiation, and the 
high-frequency modes ( 2=j ) form the “forward” part. 
For the parameters indicated in Fig. 2 the radiation on 
the wall is backward ( 0<zS ) almost everywhere if 

5.0≤β . In the case of 7.0≥β , we have forward 
radiation ( 0>zS ) almost everywhere.  

Fig. 2 shows frequencies of three modes of each 
series as a function of velocity. Low-frequency modes 
exhibit a stronger β  dependence at low velocities than 
at ultra-relativistic velocities, and high-frequency 
modes have stronger β  dependence at ultra-relativistic 
velocities.  

Measuring the bunch velocity can be carried out with 
the help of measurements of mode frequencies. For 
example, we can use the first modes of each series: 

)(11 βν  is convenient for measuring relatively low 
velocities, and the dependence of )(21 βν  for 
measuring higher velocities. Thus, we can design a

Figure 1: Spectral density of radiated energy per unit area (in SI-units) depending on frequency and angle. 
Magnitudes of parameters are the following: 0=reν , GHz5=peν  , GHz20=rmν , 5.0=F , 

GHz10 2−== dmde νν ; cm10=ρ ; pC10 12−=q ; 4.0=β (solid), 7.0=β (dotted), 9.0=β (dashed),  
1=β (dash-dotted).  
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Figure 2: Frequencies of three modes ( 3,2,1=m   
correspond to the solid, dotted, and dashed curves 
accordingly) of the 1st and 2nd series for a waveguide 
with bi-anisotropic medium: 0=reν , GHz5=peν , 

5.0=F , GHz20=rmν , 0== dmde νν , cm3=a .  
 
 
velocity detector with approximately identical  
precision for almost the entire range of velocities. It is  
also possible to design a detector with two velocity  
thresholds, as in the case of an unbounded medium.  
Such a detector will detect almost all moving charges 
owing to the low-frequency backward radiation, and  
simultaneously charges with velocities larger than a 
specified threshold owing to the high-frequency  
forward radiation.  
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