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Abstract

We discuss the longitudinal dynamics of an unbunched
beam with a collective effect due to the vacuum chamber
and with the discreteness of an N-particle beam (Schottky
noise) included. We start with the 2N equations of mo-
tion (in angle and energy) with random initial conditions.
The 2D phase space density (Klimontovich density) for the
N particles is a sum of delta functions and setisfies the
Klimontovich equation and the Vlasov equation. An arbi-
trary function of the energy also satisfies the Vlasov equa-
tion and we linearize about a convenient equilibrium den-
sity taking the initial conditions to be independent, iden-
ticaly distributed random variables with the equilibrium
distribution. The linearized equations can be solved using
a Laplace transform in time and a Fourier series in angle.
The resultant stochastic process for the phase space density
is analyzed and compared with a known result. Work isin
progress to study the full nonlinear problem.

INTRODUCTION

We study the effect of afinite number of particles (Schot-
tky noise) in acasewhereit is believed the Vlasov equation
is a reasonable approximation to the evolution dynamics.
Perhaps the simplest context to study this is the NV parti-
cle 2D coasting beam with collective effects modeled by
an impedance and with phase space variables (0, ¢) where
0 is the azimuthal angle and ¢ = (E — E,)/E, where
E = m~yc?. We consider aVlasov equilibriumdensity, f.,,
choose NV independent and identically distributed random
variables from that distribution and study the evolution of
the Klimontovich density in alinearized approximation.

MODEL

Our initial value problem (IVP) for the N particle coast-
ing beamis

bo = w(ea) = wr + kews  Ba(0) = Buo, (1)
€a = Z W(ea - eb) 5 Ea(O) = €a0 » (2)
b=1

where w,. > 0 isthe angular velocity of the reference par-
ticleand k& > 0 isthe dlip factor. Note that the vector field
is divergence free, so the flow is measure preserving. In
Appendix | we arguethat areasonable formfor W is
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where 3, = w.R/c, E, = m~v,c? and R is the machine
radius and Z,, is the elementary machine impedance. We
assume that the Z,, decay sufficiently fast as |n| — oo S0
that W isasmooth, 27r-periodic function of zero mean, i.e.,
[Zmw(e) = o.

We abbreviate the IVP (1-2) by 2 = w(z), 2(0) = zo,
where z := (61, €1,...,0n,en)T, and consider (1-2) as a
random |V P specified by adensity ¥ = ¥ (z). Thisden-
sity evolves by the Liouville equation

WY +w(z)-V,¥ =0, ¥(z,0) =Ty(z), (4
where w is determined by (1-2). Clearly U(z,t) =

Uo(p(—t, 2)), where p(t, zo) denotesthe solution of (1-2).
The Klimontovich density F(0,¢,t;20) is

NZ&@ B

where §,, is the 27-periodic delta function. In probability
theory, F' is sometimes called an empirical density. In the
following wewill suppressthe z, dependence. Calculation
of the partial derivatives of F' from (5) showsthat F' satis-
fies the Klimontovich equation
N
OF +w(€)0pF + Y W(0 —0a(t)F =0,

a=1
(6)

)8(e —€a(t)) ,  (9)

and the Vlasov eguation
O F 4+ w(€)0pF + NL(F)O.F =0, @)
both with the initia condition

F(0,e,t=0) = NZ&@ 0a0)0(c — €a0) . (8)

The operator £ in the Vlasov equationis

L(x)(0,t) := / X0 & OW (0 —0)do'de . (9)

The Klimontovich equation (6) and the Vlasov equation
(7) are not the same, e.g., afunction only of e satisfies (7)
(since W has zero mean) but not (6).

Taking the expected value of (7), with respect to the only
random quantity zo, and defining f := EF leadsto

Oif +w(e)0af + NL(f)Of = —NE(L(OF)0F) , (10)

where 0F := F — EF = F — f isthe fluctuation of F.
Thus f is an approximate solution of the Vlasov equation
if therhs of (10) is small. Equation (10) is the analogue of
the corresponding equationinthe BBGKY hierarchy where
f isequal to the single particle probability density f; (see
Appendix I1).
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ANALYSIS

We now study the deviation of the Klimontovich density
F' from the Vlasov equilibrium density f = f.,(¢). Thus
we take

Vo(2) = feq(el) T feq(eN)

and note that EF'(0,e,t = 0) =
J Jeale)

11

feq(e), where
€)dfde = 1. Let F' = feq + G then G sdtisfies

0:G + w(€)94G + NL(G)(fLy(€) + 0.G) = 0. (12)

We will study an approximation to G by dropping termsin
(12) which are nonlinear in G. Thelinearized IVPis

0G +w(€)0sG + NL(G) f,(€) = 0, (13)

G0, e,t = 0) = — fog(€) NZ 5(0 — 0a0)d (€ — €ap).-
a=1

(14
In thefollowing, G will refer to this approximate G. Since
EG(0,¢,t = 0) = 0it followsfrom (13) that EG (6, €, t) =
0 whencedF' = G.
To solve the IVP (13),(14) we expand G in a Fourier
series, giving

Gy, + inw(e)Gy —|—277Nf’ ()W, H,(t) =0,

o —inba0
G 27TN Z 6 6 6aO (15)

for n # 0 where

(16)

) =/ G (e, t)de
so (15) is an integro-differential equation. For n = 0
Gn(e,t) = Gn(e,0) whence we only study n # 0.
We take the Laplace transform in the form G, (e, Q) =
Io° e G (e, t)dt, giving us

Gone, ) = 2Gn(60) TN o€ >§? 2 ()

Q — nw(e) 0 — nw(

, (A7)

where H,, is the Laplace transform of H,,. Note that for
functions which have a L aplace transform, the transformis
analytic on a set of theform {z € C : Sm(z) > c¢o}, for
somerea cg.

To obtain H,, we integrate (17) over ¢ and use theinitial
conditionin (15) yielding

D, () H, () =: H (Q), (18)
where
~ N e—zn9a0
H,() := 27TN Z Q —nw(€q)’ (19)
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and the dispersion function
Do(Q) =1+ i2r NW, ()de 20
n( ) = +Z e / m .

The dispersion function also arises naturally in the context
of (13). Let G(6, ¢,t) = B(e) exp(i(nd — Qot)) thenit fol-
lowsthat B(e) = —i2n N (Qo—nw(e)) " f.,(€)W, [ Bde.
Integrating over ¢ gives D, (€o) [ Bde = 0 and thus so-
lutions of the given form exist only if Qg is a zero of the
dispersion function.

Physically, a natural equilibrium distribution is a Gaus-
sian. However, a Cauchy distribution alows certain in-
tegrals to be evaluated analytically [1] and so we take
feqle) == Pzl e with a > 0. In this case the dis-

persion function takes the form

(2 — Q1) (2 — Qo)

D.0) = S @ e @
where
Q1 := nwy + ansgn(nby,) — i(|nlka — |by]) |
Qa2 := nwy — ansgn(nby) — i(|nlka + |by]) |
Q, = nw, —ianksgn(n) ,
and
Wy, =: [Wy| exp(i[0y + 7]) ,
o /27rN|n||Wn| Op
an L k ( 2 4) ’
_ J2rNn[[Wal . O 7
by, == ’ sin( 5 4) .
A partial fraction expansion on (18) leads to
A1(€0a)
—inboq 1\€0a
n 27TN Z (Q in
Asz(€0a) A3(60a)
* Q=2 Q—nwleos) )’ (22)
where
Az(€0a) = (Dn(nw(ena))) ™", (23)
and, for (j,k) = (1,2) or (2,1)
(Qnj — Q)
Ai(egq) = . 24
) = o 0@y ey

Inverting (22) giveﬁ

n 27TN Z —zn90a< 60 ) — Q1 t
+As(egq)e 2t 4 Ag(e()a)e_i"‘”(eo“)t). (25)

The G,, can now be determined from (15) which then gives
G.
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We finish by studying H,. We first note that
E(H,(t)) = 0. When Sm(£,;) < 0, i.e, in the case
of linear stability, we have for large ¢ the covariance:

E(H,(t)"H,(t+ s))
1 o] efinw(e)s

~ 27N /,OO T D o %
=: Cp(s) . (26)
where * denotes complex conjugation. Thus H,, becomes
awesakly stationary stochastic process for large t. Making
the change of the variable ¢ = (A — nw,.)/nk we see that
C).(s) isthe Fourier transform of

o 1 f A — nwy
o N|nlk|D,(\)[2" nk ’

which is therefore the spectral density of the weakly sta-
tionary process. Note that b,, is proportional to v/ N, thus
the linear stability is lost if N is sufficiently large. Also,
linear stability is lost as a« — 0, i.e,, when fe,(e) —
0(e)/2m. Thus the hydrodynamical approximation to the
Vlasov equation would not be valid.

We now compare our result with an approachusedin [2].
There a ' noise power spectrum’ is computed by consider-
ing the quantity A(A) := 2AE(H, (A+iA)H, (A +iA)*)
inthelimit A — 0+. For A > 0 one has by (18),(19) that

() (27)

E(H, (A +iA)H, (A + iA)*)
1
T 4m®N2|D, (A + A2

S 1
;E((A—W(%o))%rw)’ (28)

since cross terms do not contribute because
of dtatistica independence. Thus A(A) =

1 oo Afeq(e)de ; _
NPT o DonatEiaz.  Using 0(z) =

(1/7) ima_ o4+ #AAQ wefind lima o4 A(A) = o(N).

Thus the two calculations give the same result. Note
however that the second calculation does not use the spe-
cific feq, it only uses (18)-(20). Nor does it seem to care
about the analyticity propertiesof D,,. We suspect that, the
procedurein [2] givesthe spectral density of H,, if the lat-
ter is weakly stationary. However, H,, generically is not
weakly stationary. It seems likely that the procedurein [2]
does not make sense if the roots of D, are in the upper half
plane. If they arein the lower half plane, the process H ,, is
not weakly stationary because of the decaying exponents.
We must leave open the question why the two calculations
are in agreement for our special case.

DISCUSSION

We are pursuing the issues raised after (28). In addition,
we are interested in what is really measured in an accel-
erator. Is it the spectral density? What is measured if the
process is not weakly stationary?

05 Beam Dynamics and Electromagnetic Fields

4320

Proceedings of PAC07, Albuquerque, New Mexico, USA

Work isin progressto study the full nonlinear problem.
We will continue with the Klimontovich approach devel-
oped here and investigate, in our context, the related tour
deforce nonlinear iteration calculation of Vlaicu [1] asout-
lined in Chapter 5 of [3]. In addition we will investigate
the BBGKY approach, the approach discussed in [4] and
the large deviation approach of Donsker and Varadhan, see,
eg., [5, 6].

APPENDIX |

To see that (1),(2) are not unreasonable we first note
that from the Lorentz equation m~c? = ¢E - v where
E is the dectric field and v is the velocity. For our
case of circular motion E - v ~ FE,,w,R where E,,
is the azimuthal field and R is the radius. The current
1(0,t) is approximately ¢N p(6, t)w, where N p is the par-
ticle density. Let V(6,t) := —27RE,., then solving
Maxwell's equations by a Laplace transform in ¢ and a
Fourier series in 6 gives V,,(Q) = Z(n,Q)L,(Q) with
Z(0,2) = 0. See for example [7], where Z(n,(?) is
caled the complete impedance. Approximating Z(n, 2)
by Z,, := Z(n,nw,) weobtain V,,(t) = Z,1,(t) and thus
V(0,t) = qNwr > cr Znpn(t)e™. Equations (1),(2)
follow if we define W, := —Z,,(qw,)?/(47%E,.).

APPENDIX |1

We assume that Wg(z1,...,zx) IS symmetric under
permutations of the zi,...,zy. Thus, by the specia
form of W (whence of w), ¥(z4,...,zn,t) iS aso sym-
metric under the permutations so we get f(6,¢,t) =
]EF(@,E,t) = f1(0,67t), where fj(ﬁl,el,...,Oj,ej,t) =
f \11(91,61, ..76‘N76N7t)d9j+1dﬁj+1 - dOnden fOI'j =
1,2,...,N—1land fy := U.
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