
HARDWARE AND SOFTWARE DEVELOPMENT AND INTEGRATION IN
AN FPGA EMBEDDED PROCESSOR BASED CONTROL SYSTEM

MODULE FOR THE ALS*

J. Weber, M. Chin, C. Timossi, E. Williams, LBNL, Berkeley, CA 94720, U.S.A.

Abstract
The emergence of Field Programmable Gate Arrays

(FPGAs) with embedded processors and significant
progress in their development tools have contributed to
the realization of system-on-a-chip networked front-end
systems [1]. Embedded processors are capable of running
full-fledged Real-Time Operating Systems (RTOSs) and
serving channels via Ethernet while high speed hardware
functions, such as digital signal processing and high
performance interfaces, run simultaneously in the FPGA
logic [2].

Despite significant advantages of the system-on-a-chip
implementation, engineers have shied away from
designing such systems due to the perceived daunting task
of integrating software to run a RTOS with custom
hardware. However, advances in embedded development
tools considerably reduce the effort required for
software/hardware integration.

This paper will describe the implementation and
integration of software and hardware in an FPGA
embedded processor system as illustrated by the design of
a new control system module for the Advanced Light
Source (ALS) at Lawrence Berkeley National Lab
(LBNL).

INTRODUCTION
One of the greatest difficulties faced by the accelerator

control system (CS) is in devising a scheme for
interfacing the CS to the various types of accelerator
instrumentation. The natural tendency is to mandate a
“supported” interface, compelling the instrumentation
engineer to create a compatible design that may not be
optimized for the instrumentation task. In addition,
organizational boundaries often exist between the control
system group and instrumentation engineers (who may be
outside vendors) that increase the chance of hardware
compatibility problems during commissioning. There is
general agreement, however, that the instrumentation and
the attached CS element should be co-located.

One of the most common interface strategies is to use a
bus-based system (e.g. VME, PCI). Typically a crate is
deployed containing a single-board computer (SBC) card
with an Ethernet interface to the control system, and
interface cards for analog and digital I/O. More integrated
designs may include a custom motherboard with a
processor module and I/O modules connected via an
onboard bus, or even designing the processor and I/O
chips onto a single board. However, as the performance

demands on instrumentation interfaces increase, the bus-
based interface becomes a bottleneck in the data transfer
chain from instruments to the CS. With the evolution of
FPGAs with embedded processors, the combination of
high speed converter interfaces, high speed data
processing, and control system interfaces can now be
realized in a single chip solution.

As recently as 5 years ago, the embedded design tools
for implementing a processor-based FPGA design were
quite primitive and difficult to use. The learning curve for
embedded design tools and the lack of practical examples
deterred engineers from including this powerful
technology in their designs. The progression of these
tools, example designs, and vendor support has led to the
development of highly integrated design processes,
including pushbutton board support package (BSP)
generation for several RTOSs, extensive libraries of
standard peripheral controllers (i.e. Ethernet, RS-232,
CoreConnect™ buses, serial interfaces, etc.), and
templates for designing bus compatible custom peripheral
controllers (cores).

The ALS Control Systems and Instrumentation groups
collaborated to create the ALS Mini IOC [3] based on the
FPGA embedded processor technology, including an
EPICS [4] control system interface integrated with
magnet power supply control hardware.

ENGINEERING COLLABORATION
From previous experience designing the PEP-II

Transverse Feedback Electronics [5], it was clear at the
outset of the Mini IOC design that the ability of the
control systems group and the instrumentation group to
collaborate effectively would be critical to the success of
this project. For this to work, tasks had to be divided
between hardware and software engineers efficiently.
Figure 1 shows the final development flow for the Mini
IOC. In this figure, hardware and firmware tasks are
shown in orange, specification documentation in yellow,
and software development and configuration in green.
When used, development tools are shown in parentheses.
The arrows indicate dependencies of tasks on the
completion of other tasks. The starred tasks are not
necessarily required depending on available system
memory, and will be discussed further in the
“Bootloading Control System Software” subsection of
this paper.

Design Process
The design process began with the board level design,

factoring in requirements of the control system interface
specification. For the Mini IOC, this task included

__

*This work was supported by the Director, Office of Science, Office of
Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231

Proceedings of PAC07, Albuquerque, New Mexico, USA MOPAS031

06 Instrumentation, Controls, Feedback & Operational Aspects

1-4244-0917-9/07/$25.00 c©2007 IEEE

T04 Accelerator/Storage Ring Control Systems

503

selecting the FPGA (a Xilinx® Virtex™-4 with embedded
PowerPC®), I/O interfaces, and other physical hardware
[3]. Custom cores had to be designed in the FPGA
firmware to control the selected hardware, and a
specification was written on how to control them from the
processor. The custom cores and standard cores were then
integrated into the top level design and connected to
internal buses to make them accessible to the processor.
An initial build of the RTOS kernel (VxWorks) for the
customized hardware provided a starting point for the
software development effort.

Board Level Design
(Orcad)

Custom Peripheral
Logic Design

(Xilinx ISE, EDK)

FPGA Top Level
Design

(Xilinx EDK)

FPGA Bootloader
Software*

(Xilinx EDK)

Control System
Bootloader Software*

(Tornado)

Control System
Software Build

(EPICS, Sockets)

Hardware Engineering Tasks Software Engineering Tasks

Control System Interface
Specification

VxWorks Software
Configuration

(Tornado)

Low Level Driver
Development

(Tornado)

Peripheral Interface
Specification

VxWorks Hardware
Configuration

(Xilinx EDK, Tornado)

 Figure 1: Division of Mini IOC design tasks between
hardware and software engineers.

While software engineering worked towards a final
VxWorks kernel and low level drivers, hardware
engineering developed bootloader software that would
start on FPGA power-up. The tasks of designing custom
peripherals through writing low level drivers for them was
iterated as each custom peripheral was developed so that
the software engineering development could begin before
the firmware design was complete. Once all the low level
drivers were complete, they were integrated into the
EPICS control system interface.

DESIGN STRATEGY
A significant goal of this project was to create a CS

friendly instrumentation platform that could be leveraged
for future designs [6]. Rather than standardizing the
physical hardware, we created a virtual base design that
consists of a standard control system interface and a
subset of standard peripherals (i.e. Ethernet, RS-232,
memory controllers) with a pre-defined method for
controlling custom peripherals. This virtual design can be
merged with a customized hardware/logic design that is
optimized for specific instrumentation tasks. Figure 2
illustrates the firmware design of the Mini IOC. Cores

shown in yellow were provided by Xilinx®, blue cores
were designed by LBNL using Xilinx bus interface
templates.

O
n-

C
hi

p
Pe

rip
he

ra
l B

us
 (O

PB
)

Pr
oc

es
so

r L
oc

al
 B

us
 (P

LB
)

Figure 2: ALS Mini IOC FPGA firmware block diagram.

In an embedded processor based design, one of the
challenges is to merge control system requirements and
instrumentation requirements efficiently into an FPGA
with shared resources. For the Mini IOC, this meant
merging an EPICS control system interface with a booster
ramp controller including four channels each executing a
ramp table of 10,000 16-bit points in 100us intervals [3].

Embedded Resource Management
Since hardware and software must coexist in the FPGA,

careful attention must be paid to resource allocation and
the interconnection of the various system components to
avoid collisions. However, the flexibility of embedded
systems allows designers to consider multiple
implementations of some system functions, enabling
effective resource management at design time and into the
future.

In the case of the Mini IOC, one resource allocation
that underwent changes during the design process was the
storage of the booster ramp tables. The preliminary design
specification required two ramp channels, each with a
10,000 point ramp table of 16-bit values, which required
40kB of memory. Since the selected FPGA contains about
70kB of block RAM, this memory was initially selected
for ramp table storage. This left nearly half (about 30kB)
of the block RAM available for bootloading software and
other logic functions. Moreover, block RAM is a flexible
resource and could be easily incorporated into the booster
ramp controller logic.

As design requirements were finalized, this
specification changed to four 10,000 point ramp channels
(for future expansion), with the ability to download a new

MOPAS031 Proceedings of PAC07, Albuquerque, New Mexico, USA

06 Instrumentation, Controls, Feedback & Operational Aspects

504

T04 Accelerator/Storage Ring Control Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

ramp table to each channel before the next ramp cycle
(once per second, maximum). To accommodate the ramp
table download, we chose to store a secondary ramp table
for each channel, doubling the amount of ramp table data.
With the final specifications, the Mini IOC now needed to
store 160kB of ramp table data—four times the
preliminary requirement, and more than could be stored in
the FPGA block RAM.

The large off-chip DDR SDRAM (64MB) had plenty of
memory available to store both control system software
and ramp tables. The drawback was that the booster ramp
controller would have to contend with other activity on
the bus and compete with the processor for access to the
SDRAM. Testing was done to measure the impact of this
additional load on the bus bandwidth and processor
performance, and it was determined that the impact was
minimal, since the transfer was only 8 bytes of ramp table
data every 100 us. As a result, we were able to
accommodate changes in the specification without
modifying the physical hardware or the control system
interface.

SOFTWARE DEVELOPMENT
The main challenge in software development is

generating a custom BSP and building a properly
configured RTOS kernel that runs on the embedded
platform. The Xilinx® Embedded Development Kit
(EDK) supports automatic BSP generation for VxWorks,
and a Xilinx® tutorial [7] describes how to configure
VxWorks to run on the embedded PowerPC®, which
allowed us to get VxWorks up and running quickly on the
Mini IOC. Some additional kernel configuration was
required to support EPICS on VxWorks. A simple sockets
interface was used to download ramp table data.

Figure 3: ALS Mini IOC Software Bootloading
Components.

Bootloading Control System Software
Due to limitations of the memory available in the

system, the Mini IOC requires a complex multi-step boot
process to configure itself for Ethernet communication

and to start EPICS. Figure 3 shows the connection of
components in the boot sequence.

After power-up, the FPGA loads it’s configuration from
the Platform Flash, which includes the EDK bootloader,
and begins executing it. The bootloader copies the
VxWorks bootrom from Flash to DDR SDRAM and
begins execution. The VxWorks bootrom reads unique
Ethernet configuration parameters, such as the MAC
address, from the EEPROM, and configures the Ethernet
interface. The bootrom then obtains additional IOC-
specific parameters from the BOOTP server based on its
MAC address. This extra step allows us to swap Mini
IOCs for servicing without having to reconfigure their
Flash by simply updating the central BOOTP database.
The bootrom then downloads the VxWorks kernel
(common to all Mini IOCs) from the remote file server to
SDRAM and starts VxWorks. VxWorks executes a
startup script to download EPICS code, and generic and
IOC-specific database settings from the remote file server.
EPICS is then started to perform the IOC’s control
functions.

CONCLUSION
FPGAs with embedded processors allow designers to

integrate CS and instrumentation requirements into a
single chip using a virtual design template. Employing
this template as a standard for accelerator CS
instrumentation interfaces allows greater flexibility in
hardware designs. Accelerator CS and Instrumentation
groups must collaborate on the embedded design for this
strategy to work effectively. A benefit of the initial
collaboration is that the experience gained by both groups
can be leveraged towards future designs.

REFERENCES
[1] L. Doolittle, “Embedded Networked Front Ends –

Beyond the Crate,” ICALEPCS’03, Gyeongju, Korea,
October 2003.

[2] J. Weber, M. Chin, “Using FPGAs with Embedded
Processors for Complete Hardware and Software
Systems,” BIW’06, Batavia, IL, May 2006.

[3] J. Weber, et al, “ALS Mini IOC: An FPGA Embedded
Processor Based Control System Module for Booster
Magnet Ramping at the ALS,” these proceedings.

[4] L. R. Dalesio, et al, “The Experimental Physics and
Industrial Control System Architecture,”
ICALEPCS’93, Berlin, Germany, 1993.

[5] J. Weber, et al, “PEP-II Transverse Feedback
Electronics Upgrade,” PAC’05, Knoxville, TN, May
2005.

[6] M. Chin, C. Timossi, “The Use of FPGAS as a
Platform for Distributed Control Systems,”
ICALEPCS’05, Geneva, Switzerland, October 2005.

[7] “ML310: Creating a VxWorks BSP and System
Image from the Base Design,”

 http://www.xilinx.com.

Proceedings of PAC07, Albuquerque, New Mexico, USA MOPAS031

06 Instrumentation, Controls, Feedback & Operational Aspects

1-4244-0917-9/07/$25.00 c©2007 IEEE

T04 Accelerator/Storage Ring Control Systems

505

