
ADVANCED ACCELERATOR CONTROL AND INSTRUMENTATION
MODULES BASED ON FPGA*

P. Messmer#, V. Ranjbar, D. Wade-Stein, Tech-X Corporation, Boulder, CO 80303, U.S.A
P. Schoessow, Euclid TechLabs, LLC, Rockville, MD 20850, U.S.A , J. G. Power, ANL, Argonne,

IL 60439, U.S.A.

Abstract
Field Programmable Gate Arrays (FPGAs) offer a

powerful alternative to Application Specific Integrated
Circuits (ASIC) or general purpose processors in
accelerator control applications. Software development
for these devices can be awkward and time consuming,
however, when using low level hardware design
languages. To facilitate the use of FPGAs in control
systems we are developing a library of software tools
based on ImpulseC, a high level subset of the C language
specifically designed for FPGA programming.
Development and testing of the software will be
performed on a Xilinx Virtex-4 FPGA demo board. Here
we present initial results of algorithms of relevance to
controls applications implemented in Impulse C.

INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are integrated
circuits consisting of programmable logic elements and
programmable interconnects between these elements. The
high gate density available with present technology
provides significant computational power to these units.
FPGAs have become increasingly important components
in distributed control systems for particle accelerators.
This is particularly true for applications providing local
intelligence and control functions such as implementing
PID (Proportional/Integral/Derivative) control algorithms
for control of an accelerator subsystem [1], or providing
an interface from a PC to a chain of crates in a legacy
CAMAC system [2]. FPGAs are also rapidly replacing
Application Specific Integrated Circuits (ASICs) because
of the reduced development cost of FPGA applications
and the ability to revise and upgrade the programming of
the system “on the fly”. The downside of the improved
development cycle and versatility in hardware is the
difficulty in software development. Application
development in hardware description languages (HDLs)
like VHDL or Verilog require the user to become
proficient in new and difficult languages. GUI-based
approaches in which the programmer specifies the
program in terms of a functional block diagram work well
for relatively small applications but become unwieldy to
use for complex programs. Here we present some results
of investigations using high-level languages for FPGA
algorithm development.

IMPULSE C
While there is a number of tools currently available for

high-level FPGA development, we investigate the
Impulse C [1,2] language and the CoDeveloper
programming environment. Among the reasons for
choosing Impulse C is the large coverage of the ANSI C
standard, as well as the broad support for various
hardware platforms.

Impulse C allows a software developer with knowledge
of C programming to describe mixed software/hardware
systems. In this environment, hardware/software
partitioning is defined using a small set of C-compliant
programming extensions (in the form of a set of library
functions) for expressing parallelism and process-to-
process communications. An Impulse C application
programming interface (API) provides communication
methods including data streaming, shared memory and
message passing models of communication. Impulse C
supports different FPGA targets by automatically
generating PC-to-host communications and allowing
software processes running on the host computer to
communicate directly and efficiently with the compiler-
generated FPGA hardware. The software developer, using
standard C profilers and interactive optimization tools,
can decide if a process should be located on the host CPU
or on the FPGA and partition the application accordingly.

The Impulse C compiler translates the software
processes into native code for the host CPU, while the
hardware processes are compiled to produce FPGA-ready
hardware definitions. Using a sophisticated platform
support package mechanism, code for a broad variety of
platforms can be generated, ranging from FPGA
accelerated supercomputers like the Cray XD1, to
PCMCIA FPGA cards like the Pico Computing E-14 [5].

For completeness, we mention a common value-added
feature of FPGAs, the concept of IP (intellectual property)
cores. This refers to third party software available on the
FPGA to implement a particular functionality. An IP core
is referred to as soft (implemented as a configuration bit
stream loaded at initialization) or hard (actually burned
into memory on the FPGA). Some of the capabilities
provided by IP cores are floating point arithmetic,
ethernet, fast Fourier transform, and even general purpose
microprocessors. Impulse C provides full access to
features provided by IP cores.

FIRST EXPERIMENT: BOX-CAR FILTER
Listing 1 shows the source code for the core of the

hardware process for the box car filter. This process reads

*Work supported by U.S. DOE Office of Science, Office of High
Energy Physics, under grant DE-FG02-06ER84486.
#messmer@txcorp.com

MOPAS032 Proceedings of PAC07, Albuquerque, New Mexico, USA

06 Instrumentation, Controls, Feedback & Operational Aspects

506

T04 Accelerator/Storage Ring Control Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

new values coming on the input stream, adds the value to
the running total and subtracts the last value in the
window from the running total. It then adds the new value
at the position of the last value in the window and
advances the position pointer in the ring buffer. Finally,
the actual average is computed by dividing the running
sum by the window length. This value is then shipped
back to the host CPU.

while(co_stream_read(input_stream,&c,

sizeof(int32))==co_err_none)
{
 avg_new = avg + c - buf[pos];
 buf[pos] = c;
 pos_new = pos + 1;

 if(pos_new == BUFLEN) pos_new = 0;
 avg_frac = avg_new / BUFLEN;

co_stream_write(output_stream,
&avg_frac,sizeof(int32));

 avg = avg_new;
 pos = pos_new;
}
Listing 1: Core of the hardware process for the boxcar
filter. This code is translated into VHDL and can then be
synthesized into an FPGA configuration file (bitstream).

In order to simulate a data source for this filter, we
wrote a producer process which generates data sets on the
host CPU and sends them to the FPGA.

TIMING TESTS
Once the VHDL code is generated, Impulse C provides

tools that allow determining the performance and timing
of a given logic block. It turns out that the conditional for
resetting the circular buffer (see listing 1) causes the main
loop to be split into three logic parts. As a result, the
generated logic requires for the main box-car loop 5
stages (which will correspond to 5 clock cycles on the
FPGA). The overall maximum time delay for this logic is
estimated to be 96 time units. This time delay will
determine the maximum clock frequency at which the
FPGA can be run.

By changing the source code for the ring buffer to:

pos_new = (pos + 1) % BUFLEN;

the generated logic only requires 3 stages at the same

maximum gate delay. This means that while the
maximum obtainable clock frequency will still be the
same as with the previous implementation, it will produce
a result every 3 clock cycles, rather than every 5 cycles.

One of the great advantages of an FPGA
implementation is that one is not limited to sequential
execution, but can exploit temporal parallelism

(pipelining). In Impulse C, this is accomplished by
inserting a compiler directive,

#pragma CO pipeline

at the beginning of a loop. While it takes the pipelined

loop still three clock cycles to generate one result, it can
start working on a new result while it is still processing
the previous result, resulting in one result every two clock
cycles.

Figure 1: Data flow graph for the box-car filter. These
graphs are one of the tools offered by the ImpulseC suite
to investigate and optimize the hardware processes
generated from C code.

 ImpulseC offers a variety of tools to analyze the
theoretical performance of a hardware process prior to the
place and route step. E.g. data flow graphs help to
determine if a sufficient level of instruction level
parallelism was extracted by the compiler.

MATRIX-VECTOR PRODUCT
A kernel often encountered in controls applications is

the evaluation of a matrix-vector product on integer
quantities. Listing 2 shows the source code of a matrix
vector product in Impulse C for a vector length N = 100.

While this is a straight forward implementation of a
matrix-vector product, one has to note the directive in the
inner-most loop. Loop unrolling results in the concurrent
execution of all iterations of the inner most loop by
replicating its logic. In this case, this results in 100
multiply/add units that are executed concurrently. The
overall cost of the entire matrix-vector product is
therefore 100 clock cycles.
 k = 0;
 for(i = 0; i < N; i++){
 for(j=0; j < N; j++){
#pragma CO unroll
 res[i] += matrix[k]*vec[j];
 }
 }
Listing 2: Matrix-Vector product in Impulse C.

Proceedings of PAC07, Albuquerque, New Mexico, USA MOPAS032

06 Instrumentation, Controls, Feedback & Operational Aspects

1-4244-0917-9/07/$25.00 c©2007 IEEE

T04 Accelerator/Storage Ring Control Systems

507

After compilation of the source and generation of the
hardware configuration, it turns out that the generated
hardware can only be run at a frequency of 58 MHz,
primarily due to a slow bus interface of our FPGA board.
Using an optimized bus interface would allow to run the
FPGA at about 240 MHz. At this rate, the overall
evaluation of the matrix-vector product with N = 100
takes less than 1.8 μs. For comparison, on a 1.8 GHz
AMD Opteron processor, the same computation takes 23
μs.

The significant speedup observed was only made
possible by loop unrolling, which exploits the spatial
parallelism available on FPGAs. As long as enough logic
blocks are available, this results in significant speedup.

The generated hardware for the fully unrolled matrix-
vector product takes up about 50 % of all the logic gates
on a Virtex 4 FX60 FPGA. While manual optimization of
the placement could reduce the logic use, it shows that for
more complicated algorithms including multiple matrix-
vector products full loop unrolling could not be afforded.
However FPGA logic density is expected to increase, thus
enabling larger designs to be fully unrolled.

CONCLUSION
Particle accelerator controls applications could greatly

benefit from the processing power offered by modern
FPGAs. However, the programming complexity of these

devices makes is hard for scientists to time-efficiently
develop algorithms for these devices. High-level tools,
such as Impulse C, mask this programming complexity of
FPGAs by allowing the use of standard C for
development. Application kernels, like box-car filter or
matrix-vector products, can therefore be implemented
relatively quickly. The effect of different optimization
techniques, e.g. loop unrolling or pipelining, can be
investigated prior to the time-consuming place and route
steps.

REFERENCES
[1] T. Czarski, K. Pozniak, R. Romaniuk, S. Simrock,

``TESLA Cavity Modeling and Digital
Implementation with FPGA Technology Solution for
Control System Development", TESLA Report 2003-
28.

[2] M. Browne, A. Gromme, E. Siskind, ``Front End
CAMAC Controller for SLAC Control System",
Proc. ICALEPCS 2001, San Jose CA

[3] Practical FPGA Programming in C, D. Pellerin, S.
Thibault, Prentice Hall 2005.

[4] http://www.impulsec.com
[5] http://www.picocomputing.com

MOPAS032 Proceedings of PAC07, Albuquerque, New Mexico, USA

06 Instrumentation, Controls, Feedback & Operational Aspects

508

T04 Accelerator/Storage Ring Control Systems

1-4244-0917-9/07/$25.00 c©2007 IEEE

