
COMPACT LONG WAVELENGTH FREE-ELECTRON LASERS

H. Andrews∗, C. Boulware, C. Brau, and J. Jarvis, Vanderbilt University, Nashville, Tennessee

Abstract

The idea of using the Smith-Purcell effect to build a com-
pact (table-top) long wavelength (0.1 -1 mm) free-electron
laser is quite old. However, it is only recently that a com-
plete theory for the operation of such devices has been pro-
posed. The current state of the theoretical and experimental
efforts to understand these devices will be summarized.

INTRODUCTION

Compact narrow-band far-infrared, or terahertz (THz),
sources have potential applications in a large number
of fields including biology, chemistry, and materials
science[1, 2]. The current THz sources in existence ei-
ther produce very short-pulsed broadband radiation, or re-
quire very large facilities. The exception to these are
CO2 pumped FIR lasers and backward-wave oscillators
(BWOs). FIR lasers only have discreet lines, making them
impractical for spectroscopy, and BWOs do not reach short
enough wavelengths. The theory of operation of a free-
electron laser (FEL) based on the Smith-Purcell effect has
progressed significantly in recent years. This paper reviews
the theoretical and experimental results to date.

OVERVIEW

When an electron passes over a periodic conducting sur-
face, two types of radiation are emitted. The first is sponta-
neous Smith-Purcell (SP) radiation [3] whose wavelength
λ is determined by the relation

λ =
L

|n|
(

1
β
− cos θ

)
(1)

in which L is the grating period, n is the grating order,
negative integers only, βc is the electron velocity, and θ
is the angle from the direction of electron beam travel to
the angle of emission (see figure 1). The second kind of
radiation is a bound or evanescent wave. The wavelength
of this radiation is always longer than wavelengths allowed
in the SP band, and is determined by matching the phase
velocity of the wave to the electron beam velocity [4, 5].

When the electron beam is bunched, the spontaneous
radiation becomes coherently enhanced for wavelengths
longer than the bunch length[6, 7]. This makes the radia-
tion a useful diagnostic for the electron beam[8]. When the
bunches are periodic, the coherent SP emission becomes
superradiant and the spectrum is characterized by narrow,
intense lines at harmonics of the bunching frequency[9].
SP radiation at wavelengths other than the harmonics is
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Figure 1: The lamellar grating geometry used in the two
and three dimensional theories shown with an electron (e−)
and emitted photon (squiggly line).

suppressed. These predictions are borne out by numerical
simulations [6, 10] and by experiments with prebunched
beams from rf linacs[11].

It is not necessary for the electron beam to be pre-
bunched to observe superradiant SP emission. When the
electron-beam current exceeds a threshold value, called
the start current, the electrons interact nonlinearly with the
evanescent wave and are bunched at its frequency.

The direction of energy flow of the evanescent wave is
determined by the group velocity, vg = βgc = ∂ω

∂k which
is found from the dispersion relation (shown in figure 2).
For positive vg the energy flows in the same direction as
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Figure 2: Dispersion relation for the grating used in the
Dartmouth College experiments, grating parameters listed
in Table 1. The intersection of the dispersion curve
and beam line determines the operating frequency and
wavenumber at which the phase velocity of the evanescent
wave matches the velocity of the electron beam. The slope
of the dispersion curve at the intersection determines the
group velocity of the evanescent wave, vg = ∂ω

∂k .

the electron beam and the device operates on a convective
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instability, or as an amplifier, in the manner of a traveling-
wave tube (TWT). To achieve oscillation, some sort of ex-
ternal feedback must be provided, although if the gain is
high enough, sufficient feedback can be provided by para-
sitic reflections from the ends of the grating. For negative
vg , the energy flows opposite to the electron beam and the
device operates on an absolute instability, or as an oscilla-
tor, similar to a BWO[4, 5, 12]. Above the start current, no
external feedback is required. In addition to energy trans-
ferred to the evanescent wave, the electrons emit SP radia-
tion at the wavelengths given by (1). Because the electrons
are bunched periodically at the frequency of the evanescent
wave, the SP emission is superradiant at the harmonics of
the bunching frequency [9]. When the bunching is strong,
SP emission is suppressed at other frequencies. In this con-
figuration, the device is called a Smith-Purcell free-electron
laser (SP-FEL).

It should be pointed out that so-called SP-FELs come
in two configurations, sometimes called the Fabry-Perot
and evanescent-wave versions of a ledatron [13]. In the
Fabry-Perot configuration, also called an orotron, a mirror
is placed above the grating to reflect the SP radiation back
to the grating [14]. This provides feedback and permits
the orotron to oscillate at the wavelength of the SP radia-
tion given by (1) with cos θ = 0. The wavelength must,
of course, also be an eigenfrequency of the resonator. De-
spite their low gain, orotrons have proved useful for spec-
troscopy in the millimeter-wave region [15]. In the other
configuration, which is the subject of the present report,
there is no mirror. The electrons are bunched by the evanes-
cent wave that is excited by the electron beam and travels
along the grating.

TWO DIMENSIONAL THEORY

The model used in our two dimensional calculations is
shown in figure 1. We start with a grating having period
L, groove depth H and groove width A. We start by ex-
panding the fields above the grating into Floquet modes,
and finding the fields within the grating grooves. In the re-
gion above the grating, the electron beam is considered to
be a plasma dielectric moving only in the ẑ direction which
extends from the top of the grating teeth upwards. Match-
ing the fields at the top of the grating teeth and taking the
no-beam limit leads to the empty grating dispersion rela-
tion. The dispersion relation for the grating used in experi-
ments at Dartmouth College [17, 18, 19] is shown in figure
2. Parameters for this grating are given in Table 1. The
intersection of the dispersion relation and the beam line in
the dispersion plane determine the operating frequency and
wave number of the evanescent wave. This is called the
synchronous point. Treating the electron beam as a pertur-
bation of empty grating modes, we expand the dispersion
relation about the synchronous point to first order, and find
the frequency and wavenumber shifts due to the presence
of the beam. Additionally, because the grating metal is not
a perfect conductor, it will have some small resistive loss.

Table 1: Grating and operating parameters used in calcu-
lations. These are the parameters used in the Dartmouth
experiments published in [17]

Grating period 173 μm
Groove width 62 μm
Groove depth 100 μm
Beam energy 35 keV
Beam thickness 25 μm
Current density 1.6 MA/m2

These losses are also included as a frequency shift in the
dispersion relation. The resulting dispersion relation is

(δω − βcδk)2
[
δω − βgcδk +

ω0

2Qc
(1 + i)

]
=

ω2
pS

γ3Rω

(2)
in which δω is the complex frequency shift, δk is the
complex wavenumber shift, ω0 is the operating frequency,
γ = 1√

1−β2
, ωp is the plasma frequency, Qc is the qual-

ity factor of the grating and S and Rω are functions of the
grating parameters [16].

The dispersion relation admits three roots. These are
generally referred to as the structure wave, and the fast
and slow space-charge waves. In the simple case where
the waves are excited at a real frequency we take δω = 0.
In the absence of losses, the gain, or the negative imaginary
component of the slow space charge wave, is given by

μ∞ = Im (δk) =
√

3
2

∣∣∣∣∣
ω2

pS

γ3Rωβ2βgc3

∣∣∣∣∣
3

(3)

However, a more important quantity for the SP-FEL is
the start current. For an electron-beam current above the
start current, the evanescent wave grows enough to cause
bunching of the electron beam. To find the start current we
must first find the growth rate of the three waves. We as-
sume both δω and δk are complex, and numerically solve
the dispersion relation in conjunction with three boundary
conditions for the three waves. The first and second bound-
ary conditions require that all density and velocity modu-
lations in the electron beam vanish at the upstream end of
the grating. Finally, we require that the amplitudes of the
three waves sum to zero at the downstream end of the grat-
ing. This is equivalent to stating that there is neither an
incident wave traveling upstream on the grating, nor reflec-
tions from the end of the grating. To include reflections, we
instead require that the wave amplitudes sum to a non-zero
value determined by upstream and downstream reflection
coefficients, which must be determined from simulations.
The system of equations is recast in terms of dimensionless
parameters, δi. After finding numerical values for these pa-
rameters, δ0 is solved for the growth rate. Including losses

MOZBAB03 Proceedings of PAC07, Albuquerque, New Mexico, USA

02 Synchrotron Light Sources and FELs

100

A06 Free Electron Lasers

1-4244-0917-9/07/$25.00 c©2007 IEEE



and reflections, the growth rate is

Im (δω) =
2√
3

ββgcμ∞
βg − β

[
Im (δ0) −

√
3ν∞

2μ∞

]
(4)

where ν∞ is the empty-grating loss. Our predicted growth
rate compares favorably with the growth rate found in 2D
particle-in-cell (PIC) simulations [16]. A comparison of
these results is shown in figure 3.
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Figure 3: The predicted growth rate (solid line) agrees well
with the growth rate observed in PIC simulations.

We calculate the start current as a function of electron ac-
celerating voltage for the grating and operating conditions
listed in Table 1. We find that in this regime neither losses
nor reflections have a profound impact. Losses increase the
start current by a small percentage, and reflections cause
oscillations in start current. These effects can be seen in
figure 4. It is expected that for operation at shorter wave-
lengths, losses will raise the start current of these devices
substantially.
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Figure 4: Start current with and without losses and reflec-
tions as a function of voltage for the parameters shown
in Table 1. In this regime the losses and reflections do
not have a strong impact on device operation, however, at
shorter wavelengths it is expected that losses will raise the
start current substantially.

THREE DIMENSIONAL THEORY

The three-dimensional model is much the same as the
2-D theory, except we restrict the electron beam to a
width W . The approach is similar to that used for the 3-
D Cerenkov FEL[20]. We expect from diffraction argu-
ments that the mode width will be large compared with the
evanescent scale height but small compared with the gain
length. The modes are expected to peak at the center of
the grating and electron beam, y = 0, and decay to zero as
y → ±∞.

In this treatment we consider only transverse-magnetic
(TM) modes of the grating for two reasons. First, to lowest
order in the electron-beam perturbation, the mode structure
should be nearly the same as that of the empty grating. For
the infinite-width grating considered here, the surface cur-
rents required to support the longitudinal magnetic fields
of a transverse-electric (TE) mode cannot exist. Therefore
the lowest-order mode structure will be approximately that
of a TM mode. Secondly, the electron beam is introduced
as a linear dielectric. To first order in the fields, the elec-
tron beam resonantly exchanges energy with only the TM
mode’s longitudinal electric field component. Energy ex-
change with TE modes is of higher order in the fields and
can be ignored.

In the limit where the electron beam is infinitely wide,
the 2-D dispersion relation is recovered. However, when
the beam is narrow compared with the optical mode we find
that the gain is no longer cubic in beam current, but instead
has a five-halves dependence. The dispersion relation for
this case is

(δω − βcδk)2
[
Dω

Dy
(δω − βgcδk)

] 1
2

(5)

=
β3c2W

ALDy

ω2
p

γ2ω2
0

tan
(ω0

c
H

)
[1 − cos (k0A)]

where k0 is the operating wavenumber and Dω and Dy are
the derivatives of the empty grating dispersion relation with
respect to ω and k2

y , the ŷ wavenumber squared, respec-
tively.

When the device operates as an amplifier, with βg posi-
tive and δω = 0, the dispersion relation becomes,

δk
5
2 = Γe

iπ
2 (6)

where

Γ =
W

AL

ω2
p

γ2ω2
0

β tan
(

ω
c H

)
√

cβg |DωDy|
[1 − cos (k0A)] . (7)

There are five roots to this dispersion relation, however,
only three of them satisfy the boundary conditions requir-
ing that the fields decay to zero as y goes to ±∞. Again we
find three roots corresponding to a growing wave, or slow
space charge wave, a decaying wave, or a fast space charge
wave, and a third wave which neither grows nor decays.
The gain for the slow space charge wave is

μ3−D = −Im (δk) = Γ
2
5 sin

(π

5

)
(8)
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This value for gain is approximately a factor of 7 smaller
than the 2-D gain as shown in figure 5. Basic diffraction
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Figure 5: 3-D field gain coefficient for the amplifier mode
is a factor of seven smaller than 2-D gain coefficient.

arguments support this result. For the two-dimensional
case gain ∝ n

1/3
e ∝ I1/3. In the three-dimensional

result the average electron density over the area of the
mode is approximately ne ≈ I

ΔxΔyβc . The mode width

Δy ∝ 1/
√

gain, so ne ∝ I
√

gain. Combining this with
the first, we find gain ∝ I2/5. This can be understood to
be a manifestation of gain guiding in the SP-FEL.

COMPARISON WITH EXPERIMENT

Although BWOs are well known both theoretically and
experimentally, only the group at Dartmouth College has
operated a SP-FEL in the evanescent-wave configuration
and reported observations of superradiant SP emission[17,
18, 19]. The experimental results they report are not in
agreement with the theoretical predictions. In the experi-
ments, superradiant SP radiation was observed on the first
three Smith-Purcell orders. Theory predicts that the first
order should be suppressed when the bunching is strong
because it is not a harmonic of the bunching frequency.
However, the Dartmouth experiments never reached the
regime of strong bunching (the emission never achieved
saturation), and the simple theory may not apply. Two fur-
ther difficulties must also be addressed. First, despite the
fact that strong emission at the frequency of the evanes-
cent wave from the ends of the grating is predicted by the-
ory and observed in numerical simulations (and the output
of BWOs appears at precisely this frequency), radiation at
wavelengths longer than first order-SP emission was never
observed. Second, theoretical predictions of the start cur-
rent are higher than the superradiant threshold observed in
the Dartmouth experiments[12, 21]. Although the discrep-
ancy is not large for the two-dimensional theory, diffraction
effects in the three-dimensional theory worsen the compar-
ison.

CONCLUSIONS

We summarize theoretical work describing the operation
of an SP-FEL. The two-dimensional theory compares very
well with PIC simulations. The inclusion of losses and re-
flections does not change the results substantially for the
operating parameters considered. Diffraction effects in-
cluded in the three-dimensional theory change the depen-
dence of gain on current from one-third to five-halves. Ex-
perimental results to date are not in agreement with predic-
tions.
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