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Abstract

The Enge function can be used to parametrize any ele-
ment with well-defined edges. If an element is too short,
however, there is no unambiguous definition of the effec-
tive edge. We first demonstrate that very little fringe field
detail is needed to obtain accurate maps even up to fifth
order. Then we go on to show a simple fitting algorithm
that works well for short as well as long quadrupoles. The
results are true whether the quads are magnetic or electro-
static.

INTRODUCTION

Let us characterize the quadrupole strength along the
axis s as k(s). A long quadrupole is one in which sec-
ond and higher derivatives of k are effectively zero at the
quad centre. Under these conditions, it is a good ap-
proximation to model the quad as 3 regions: entrance
fringe field, ideal quad body, exit fringe field. Virtu-
ally all beam transport codes take this approach [GIOS,
TRANSPORT, COSY-∞, TRACE-3D], but they take differ-
ent approaches in parametrizing the fringe fields. GIOS
(and PSI-TRANSPORT[3]) use fringe field integrals to set
up a matrix that is applied at the effective edges of the
quad[1]. COSY-∞ depends upon a fit of the fringe field
to an Enge function[2]; it first backtracks a drift from the
effective quad edge, then Runge-Kutta integrates through
the Enge function, backtracks an ideal quad to the effec-
tive edge, tracks through the ideal quad, and then reverses
the procedure to exit the quad, finally arriving at the exit
effective edge.

If a quadrupole’s length is comparable or less than its
aperture, we call it a short quad. This can be stated more
quantitatively: it is short if the second derivative, k ′′, at the
centre (s = 0) is not small compared with k(0)/L2, where
L is the length.

For short quads, both the matrix fringe field approach
and the Enge-fit approach are not usable because there is
no plateau in the strength function k. It is tempting to sim-
ply treat k(0). However, the fringe field function would
then have discontinuous second and higher derivatives. At-
tempting a fit to the Enge function results in diverging co-
efficients.

However, if we reduce the number of Enge coefficients
to 1, there is a unique fit, and the map is sufficiently accu-
rate for designing and modeling beamlines.
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SOME THEORETICAL
CONSIDERATIONS

First order

If one desires only a first order calculation, it is still im-
portant to properly characterize the fringe field because it
is not possible to account for it by simply adjusting the ef-
fective length. In principle, by symmetry, there are only 2
parameters needed for each of x and y. (Each 4-element
2 × 2 matrix has unity determinant and by symmetry, the
diagonal elements are equal.) One can adjust the effective
length and strength, but fudging in this way would require
different effective parameters for x and y: the focusing di-
rection would need a shorter effective length, and the defo-
cusing direction, longer. Roughly, the effect is to weaken
the focusing by the fractional amount

Δf

f
≈ 1

2
a2

fL
(1)

where a is the aperture radius and L the effective length.
Often, the effect is tiny because both f and L are much
larger than the aperture. But low-energy secondary (muon,
kaon) channels are examples of large-acceptance, short,
strongly focusing lines where the effect can be larger than
10%.

A matrix approach is used in GIOS, where the effect of
the fringe field is applied with a transfer matrix whose ele-
ments depend upon various “fringe field integrals”[1]. But
it is over-specified, using 3 fringe-field integrals where only
2 parameters are in principle needed. As well, the fringe-
field matrices in GIOS are not symplectic. Irwin’s [4] ma-
trix is symplectic, but uses only one parameter (I1, which
can be thought of as a normalized effective width of the
fringe field) because k(s) is assumed to be anti-symmetric
about the edge, and so is not completely general. But as
discussed below, it is sufficient for most purposes.

Third Order

Third order forces depend upon k ′ and k′′ and so are
singular in the hard edge limit. Nevertheless, the net effect
through a quadrupole does not depend upon the extent of
the fringe field: shorter fringe fields have stronger third or-
der fields, but they act over shorter distances, and the two
effects neatly cancel. This was shown in ref. [5]. There is,
however, a small effect that comes into play when the quad
is short compared with its length. When the derivatives are
transformed away, the third order effect is found to be pro-
portional to k2 rather than k, and so the effective length of
the third order is shorter than that of first order. In the GIOS
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approach, this is taken into account by fringe field integral
I4 (eqn. 7 below).

Fifth Order

Unlike third order, the fifth order elements of quadrupole
transfer maps do depend directly on the extent of the fringe
field. That is to say, they diverge in the hard-edge limit.
However, the fifth order map depends mainly on the fringe
field extent and not upon the details of its shape.

Enge Coefficients

The Enge function of the fringe field form is:

E(s) ≡ 1

1 + exp
[∑N−1

k=0 ak(−s
D )k

] (2)

where D is the aperture diameter. COSY-∞ uses N = 6
coefficients. This is easily sufficient to give an accurate fit
to a real quad. But is it necessary?

The Enge function has many drawbacks. For exam-
ple, the series is not an expansion of the usual type where
adding more terms refines the fit. On the contrary, adding
one more term will require all the coefficients to change or
else the effective edge will be shifted. As noted above, even
up to fifth order, the detailed shape of the fringe field is not
very important. Yet in order to get the effective length cor-
rectly reproduced to within 0.1% requires all 6 coefficients
to be specified to at least 3 significant figures. So this is
obviously not an efficient description.

Tanh Edge

For most cases of interest, the fringe field is relatively
symmetric and one can set all Enge coefficients except a1

to zero. In that case, the edge function becomes:

E(s) ≡ 1
1 + exp

(−a1s
D

) =
1 + tanh

(
a1s
2D

)
2

(3)

From this one can find the GIOS fringe field integrals:

I1 ≡
∫ sb

∫
E(s)dsds − s2

b/2 =
4ζ(2)
a3
1

(4)

I2 ≡
∫ sb

s

∫
E(s)dsds − s3

b/3 = 0 (5)

I3 ≡
∫ sb

(∫
E(s)ds

)2

ds − s3
b/3 =

16ζ(3)
a3
1

(6)

I4 ≡
∫ sb

E2(s)ds − sb = − 2
a1

(7)

where ζ is the Riemann zeta function.
This suggests an easy way to fit the fringe field to

the one-parameter Enge function: Find E(s) (for exam-
ple by mapping the quad), numerically calculate I4, set
a1 = −2/I4. For the Enge coefficients built into COSY-∞
(these are from a family of PEP quads), I4=-0.4328, so

Order Rel. Error
1 0.0003
3 0.0014
5 0.055
7 0.35

Table 1: 6-parameter vs. 1-parameter Enge function com-
parison.

a1 = 4.62. COSY-∞ results for the default Enge coeffi-
cients (0.296471 4.533219 -2.270982 1.068627 -0.036391
0.022261) are compared with the simplified case (0 4.62 0
0 0 0 0) in the table. (The maps are partially given in the
Appendix.) As claimed, the approximation is very good up
to and including fifth order. One can adjust a1 to get fifth
order term errors down to the level of 1% at the cost of
raising the third order map error to 1%, but that would be
cheating. These results apply to both magnetic and electro-
static quadrupoles.

SHORT QUADRUPOLES

A complete symmetric quad can be fitted to

k(s) = k0 [E(L/2 + s) + E(L/2 − s) − 1] (8)

Trivially, the integral
∫

kds = k0L. If the quad is long,
E(L/2) − 1 � 1, so k0 = k(0), and then the effective
length L is known as well from the integral. I4 can be
found unambiguously from eqn. 7.

On the other hand, if the quad is short, k0 is not known.
One can choose any value larger than k(0) and still fit the
other Enge coefficients. In the limit of the choice k0 =
k(0) (a choice often naively made), the high order Enge
coefficients diverge, because this represents the case where
the second and higher derivatives of E(s) are discontinuous
at s = 0.

A simple alternative is to use the one-parameter Enge
function eqn. 3. This corresponds to the following fit.

k(s) =
k0

2
[tanh(a1(L/2 + s)) + tanh(a1(L/2 − s))]

(9)
This is in fact a 2-parameter fit, as k0 and L are related by∫

kds = k0L.
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APPENDIX: TRANSFER MAPS

The following are the COSY-∞ procedure and resulting
transfer maps, edited for clarity. The two cases are: 6-
parameter Enge function, and 1-parameter Enge function.

PROCEDURE RUN ;
VARIABLE Lq 1 ;VARIABLE Vq 1 ;
VARIABLE ap 1 ; VARIABLE S 1 ;
Lq : = 0 . 4 0 6 4 ;Vq:= . 1 ; ap : = 0 . 0 5 1 6 ;
OV 7 2 0 ;
RP 1 30 1 ;
WRITE 69 ’ D e f a u l t : 6 Enge Coef f . s ’ ;
UM ;
f r 3 ;
mq Lq Vq ap ;
Pm 69 ;
WRITE 69 ’ S i m p l i f i e d : 1 Enge Coef f . ’ ;
UM ;
loop s 1 2 1 ;
f c 2 s 1 0 . 4 . 62 0 0 0 0 ;
end loop ;
f r 3 ;
mq Lq Vq ap ;
Pm 69 ;

ENDPROCEDURE ;

Default: 6 Enge Coeff.s
0.80373 -0.92879 0.00000 0.00000 1000
0.00000 0.00000 1.20979 1.07193 0010
0.03117 -0.48531 0.00000 0.00000 3000

-0.22328 -2.40738 0.00000 0.00000 1020
0.00000 0.00000 -0.16142 -1.91380 2010
0.00000 0.00000 0.19450 -1.04865 0030

-0.56495 -2.50754 0.00000 0.00000 5000
-6.47894 -25.6781 0.00000 0.00000 3020
-4.51921 -19.3359 0.00000 0.00000 1040
0.00000 0.00000 -2.66172 -13.6025 4010
0.00000 0.00000 -5.70145 -36.3399 2030
0.00000 0.00000 -0.98442 -4.53718 0050

-19.4869 -58.0318 0.00000 0.00000 7000
-329.422 -1189.99 0.00000 0.00000 5020
-451.688 -2204.89 0.00000 0.00000 3040
-130.313 -932.286 0.00000 0.00000 1060
0.00000 0.00000 -122.169 -457.437 6010
0.00000 0.00000 -470.009 -2217.53 4030
0.00000 0.00000 -397.234 -2488.04 2050
0.00000 0.00000 -27.0717 -223.553 0070

-----------------------------------------
Simplified: 1 Enge Coeff.
0.80376 -0.92905 0.00000 0.00000 1000
0.00000 0.00000 1.20983 1.07162 0010
0.03114 -0.48465 0.00000 0.00000 3000

-0.22324 -2.40734 0.00000 0.00000 1020
0.00000 0.00000 -0.16155 -1.91396 2010
0.00000 0.00000 0.19460 -1.04973 0030

-0.53589 -2.35115 0.00000 0.00000 5000
-6.15146 -24.0411 0.00000 0.00000 3020
-4.29197 -18.4463 0.00000 0.00000 1040
0.00000 0.00000 -2.52817 -12.8080 4010
0.00000 0.00000 -5.32083 -34.4545 2030
0.00000 0.00000 -0.92228 -4.34041 0050

-14.6395 -40.5916 0.00000 0.00000 7000
-242.061 -826.842 0.00000 0.00000 5020
-324.174 -1585.82 0.00000 0.00000 3040
-89.3586 -708.561 0.00000 0.00000 1060
0.00000 0.00000 -92.4758 -328.478 6010
0.00000 0.00000 -345.005 -1598.81 4030
0.00000 0.00000 -281.155 -1847.34 2050
0.00000 0.00000 -18.4175 -174.262 0070

-----------------------------------------
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