
PARALLEL BEAM-BEAM SIMULATION INCORPORATING MULTIPLE
BUNCHES AND MULTIPLE INTERACTION REGIONS

F.W. Jones, TRIUMF, Vancouver, Canada
W. Herr, CERN, Geneva, Switzerland

T. Pieloni, EPFL, Lausanne and CERN, Geneva, Switzerland

Abstract

The simulation code COMBI has been developed to en-
able the study of coherent beam-beam effects in the full
collision scenario of the LHC, with multiple bunches inter-
acting at multiple crossing points over many turns. The
program structure and input are conceived in a general
way which allows arbitrary numbers and placements of
bunches and interaction points (IP’s), together with proce-
dural options for head-on and parasitic collisions (in the
strong-strong sense), beam transport, statistics gathering,
harmonic analysis, and periodic output of simulation data.
The scale of this problem, once we go beyond the simplest
case of a pair of bunches interacting once per turn, quickly
escalates into the parallel computing arena, and herein we
will describe the construction of an MPI-based version of
COMBI able to utilize arbitrary numbers of processors to
support efficient calculation of multi-bunch multi-IP inter-
actions and transport. Implementing the parallel version
did not require extensive disruption of the basic computa-
tional routines, since all MPI functionality is isolated in a
separate layer of steering routines. After an overview of the
basic methods and numerical components of the code, the
computational framework will be described in detail and
parallel efficiency and scalability of the code will be eval-
uated. Initial results are shown for an example 4-IP LHC
collision scheme.

INTRODUCTION

For the LHC and other colliders involving large numbers
of bunches and multiple interaction regions, a logical pro-
gression in the study of coherent beam-beam effects is to
account for the different collision patterns[1] experienced
by the bunches. These are influenced by the bunch filling
patterns (possibly different) in the two rings, and the lo-
cation and number of IP’s in operation. Moreover, around
each crossing point will be grouped a series of parasitic col-
lisions where bunches are in close proximity. The collision
patterns define distinct equivalence classes for bunches,
within which there will be unique coherent oscillation spec-
tra and possible origins of instability.

Starting with a collision/transport model for a bunch pair
and a single IP, parallel programming methods can be ap-
plied to study as many collision patterns as possible (with
given computing cluster resources) via collective simula-
tion of trains of bunches and multiple IP’s. With appro-
priate allocation of processors to tasks, this problem lends

itself well to message-passing parallelism on commodity
clusters and scales up readily to allow a significant advance
in the scope of this type of collider simulation.

COLLISION AND TRANSPORT MODEL

In developing the parallel COMBI code one of the inten-
tions is to be able to accommodate collision models at vary-
ing levels of detail, from rigid-bunch and soft-Gaussian
treatments to self-consistent field-solve/kick algorithms.
For this initial development we chose the middle ground
of the soft-Gaussian model, coupled with linear matrix
transport, which can provide qualitatively correct results
in coherent oscillation spectra and yet remains accessible
to small-scale multi-bunch computations on a single pro-
cessor, thus allowing a meaningful assessment of parallel
efficiency.

The structure of the computational core, first
developed[2] in a single-processor setting is based on
nested stepping over turns, bunches, and ring locations.
Zero, one, or two bunches (one from each beam) may
occupy a ring location (“slot”) and to any location there
may be assigned an action code that specifies a computa-
tion to be done. In the non-parallel code these actions are
performed in sequence for each ring location, whereas in
the parallel code the computations are distributed to a set
of processes which do the computations locally and with
local data.

PARALLEL ALGORITHM

The parallel schema (Figure 1) comprises one supervi-
sor process and a set of worker processes, with tasks as
follows:

Supervisor

The supervisor initiates all computations performed by
the worker processes: essentially it is an executive “shell”
which performs no computations except for minimal book-
keeping of bunch positions, and hence is free to rapidly
send task instructions to a large number of workers and
keep them maximally occupied. The supervisor activities
comprise the following:

1. Reads the input files (run parameters, fill patterns, col-
lision and transport patterns).

2. Initialises the worker processes.

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN007

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3235

3. Maintains data structures for collision patterns, fill
patterns, and bunch stepping.

4. At each step sends coordinated task messages to the
workers for all active bunches.

5. Receives completion messages from workers and en-
sures proper task synchronization and data integrity.

6. Sends shutdown messages to all workers when the run
is complete.

Combi Data Flow

SUPERVISOR

Worker 6Worker 4Worker 2

Worker 1

Beam 1

Beam 2

Worker 3Worker 5

125 4 3

3 52 41

IP
Action: HO Coll.
Partner: Proc 4

Action: Parasitic Coll.
Partner: Proc 6

Action: HO Coll.
Partner: Proc 3

Action: Parasitic Coll.
Partner: Proc 1

Field data
exchange

Figure 1: Parallel architecture and communications paths

Worker

Each worker process is associated with a particular
bunch and stores and calculates all data (coordinates and
statistics) for that bunch locally. Depending on available
resources and the number of parasitic collisions to be mod-
elled at each IP, in the implementation each worker process
may actually be responsible for several bunches, but for
clarity of exposition we retain the processor-bunch duality.
Workers perform self-actions (e.g. transport to the next in-
teraction point) or pair-actions (e.g. a head-on or parasitic
collision with another bunch).

After initialization, each worker goes into “listen” mode
where it waits for an instruction from the supervisor, acts
on it, and sends a completion message back to the su-
pervisor. This continues until a shutdown message is re-
ceived, upon which the process exits. Each instruction mes-
sage contains the relevant information to perform the task,
such as betatron phase advances, and identity of partner
bunches. The actions can be itemized as follows:

1. Initialization. Generate initial particle coordinates
sampled from the bunch distribution, using the ran-
dom seed sent by the supervisor. On completion re-
turn the random seed to the supervisor.

2. Transport. Advance the particles according to the be-
tatron phases sent by the supervisor. Then send a com-
pletion message to the supervisor.

3. Collision. The type of collision (head-on, parasitic)
and identity (process id) of the partner (opposing

bunch) are sent by the supervisor. Compute the elec-
tric field of the local bunch and send the field data to
the partner. Receive a message from the partner con-
taining its field data, and perform the resulting kicks
on the local bunch coordinates. Send a completion
message to the supervisor.

4. Other actions. Additional single- or dual-bunch ac-
tions or variants identified by action code and partner
bunch number.

5. Output. Workers are responsible for all output involv-
ing the local bunch data, and open independent output
streams for these. Output can include bunch statistics,
centroid coordinates for frequency analysis, and parti-
cle coordinates for tracking analysis.

6. Shutdown. Worker process exits.

PERFORMANCE

We performance-tested the parallel Combi code on a
commodity cluster of Opteron 250 (2.4GHz, 1024KB
cache) processors in a dual-cpu MYRINET configuration,
employing the Portland Group compilers together with
the MYRINET GM implementation of MPI. We also per-
formed some preliminary timings on an IBM Blue Gene
supercomputer (8192 CPUs and 2TB memory). We in-
clude the latter architecture since it provides a reference
point for possible very-large-scale simulations in which the
number of simulated bunches may approach the number of
real bunches circulating in the LHC.

0 10 20 30 40 50 60

2

4

6

8

10

12

14

16

18

20

22

Number of bunches per beam

R
un

 ti
m

e
(s

/tu
rn

)

LHC COMBI parallel on Mizar
LHC COMBI parallel on Blue Gene
Simplified LHC non−parallel COMBI

Figure 2: Timings of original (single processor) and paral-
lel codes with varying numbers of bunches

As seen in Figure 2 the parallel code performs effectively
in the MPI setting and scales to large numbers of bunches
on the commodity cluster with a modest, and linear, com-
munications overhead, reflecting the predominantly one-
to-one messaging scheme, with no all-to-all messages re-
quired and minimal one-to-all and all-to-one messaging for
task assignments and synchronisation. The timing trend for
the non-parallel code is as expected and indicates that by
�8 bunches the parallel speed-up is approximately equal
to the number of processors.

THPAN007 Proceedings of PAC07, Albuquerque, New Mexico, USA

05 Beam Dynamics and Electromagnetic Fields

3236

D05 Code Developments and Simulation Techniques

1-4244-0917-9/07/$25.00 c©2007 IEEE

The initial results for Blue Gene reflect its lower cpu
clock speed and also suggest a non-optimal communica-
tions overhead, so further testing and development will be
required to establish its applicability to large-scale prob-
lems.

0 1 2 3 4 5 6 7 8
0.015

0.02

0.025

0.03

0.035

0.04

Number of interaction points

R
un

 ti
m

e
(s

/tu
rn

)

8k turns
16k turns
32k turns
64k turns

Figure 3: Timings of parallel code with varying numbers
of interaction points

On the commodity cluster another series of timings were
performed for a fixed number of circulating bunches and
increasing numbers of IP’s, until all bunches were colliding
at every step. Figure 3 shows again that increasing numbers
of collisions can be accommodated with low overhead and
good scaling properties.

EXAMPLE APPLICATION

As an example we simulated an arbitrary configuration
for the LHC where the two colliding beams are made of 24
and 29 bunches, respectively. The collision pattern consists
of 4 head-on (HO) collisions (IP 1, 2, 5 and 8 of the LHC
layout) and 5 parasitic interactions left and right of IP 1
and 5. The non-regular beam filling scheme together with
the non-symmetric collision pattern lead to several differ-
ent families of bunches. In Figure 4 we compare the hor-
izontal tune spectra of a “nominal” bunch (bottom) and a
particular “SuperPacman” bunch (top). The nominal bunch
experiences 4 HO and 14 parasitic collisions while the Su-
perPacman bunch collides HO only in IP 2 and 8. The
SuperPacman bunch doesn’t show any coherent oscillation
except at the machine unperturbed tune (�� � 0.31) while
the nominal bunch (bottom), due to the 4 HO interactions,
will experience oscillations also at �� � 0.298. Only a
code that allows a multi-bunch beam structure and multi-
ple interaction points can reproduce coherent beam-beam
effects for all different bunch categories. For this exam-
ple, the parallel code running time on 54 clustered 2.4GHz
CPUs is 0.411 s/turn, which for a minimum required num-
ber of turns of ��� means less than 2 hours of computation
time. By comparison, the non-parallel code has a running
time of 26.2 s/turn and would have required 5 days on the
same hardware.

0.296 0.298 0.3 0.302 0.304 0.306 0.308 0.31 0.312

Bunch: 2 HO

Q
x

A
rb

itr
ar

y
U

ni
ts

0.296 0.298 0.3 0.302 0.304 0.306 0.308 0.31 0.312

Bunch: 3 HO and 14 LR

Q
x

A
rb

itr
ar

y
U

ni
ts

Figure 4: Horizontal tune spectra for a nominal bunch (4
HO and 14 parasitic interactions, bottom) and a SuperPac-
man bunch (2 HO interactions, top).

CONCLUSIONS

The parallel code COMBI has expanded the scope of
multi-bunch and multi-IP beam-beam simulations and can
be used effectively on commodity clusters. This enables
new studies of coherent beam-beam effects in the LHC,
ranging over the variety of collision patterns that will be
present, and in the RHIC collider exploring experimental
evidence of bunch to bunch differences[3].

The structure of the code allows further refinements such
as the recent additions of chromaticity and measurement
devices (transverse beam transfer functions[3]) and the in-
clusion of a self-consistent field-solve/kick model which is
the next planned development.

ACKNOWLEDGEMENTS

The authors would like to thank colleagues at the EPFL
HPC Lausanne for their support of this project and for in-
valuable access to advanced hardware and software, in par-
ticular Drs. J. Menu and J.C. Leballeur for the MIZAR
cluster and C. Clemencon for the BlueGene/L Supercom-
puter facilities.

REFERENCES

[1] T. Pieloni and W. Herr, Coherent beam-beam modes in the
CERN Large Hadron Collider (LHC) for multiple bunches,
different schemes and machine symmetries, Particle Acceler-
ator Conference 2005, Knoxville, USA.

[2] T. Pieloni and W. Herr, Models to Study Multi Bunch Cou-
pling Through Head-On and Long-Range Beam-Beam Inter-
actions, EPAC 2006, Edinburgh.

[3] W. Fischer et al., Transverse Beam Transfer Functions of Col-
liding Beams in RHIC, these proceedings.

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN007

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3237

