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Abstract 
Very high momentum compaction can be obtained in 

non-scaling FFAG accelerators using constant-gradient 
magnets with their field strengths decreasing outwards - 
sufficiently high that the magnet apertures (and vacuum 
chamber) need be little wider than in a strong-focusing 
synchrotron. Such machines are of great potential interest 
for applications in the 0.1 - 50 GeV energy range requir-
ing higher pulse repetition rates or intensities than synch-
rotrons can provide. Explicit formulae have been devel-
oped for the equilibrium orbit properties, particularly their 
momentum dependence, in various lattices, and give 
accurate enough results to provide a useful tool for choos-
ing the magnet parameters. In this paper the dependences 
of orbit offset and circumference on momentum are 
explored for doublet lattices, and numerical results from 
the formulae are compared with those from lattice codes. 

INTRODUCTION 
For moderate energies Fixed-Field Alternating-Gradient 

(FFAG) accelerators offer higher repetition rates, accept-
ance and beam intensity than synchrotrons. Traditional 
"scaling" FFAGs require the orbit shape, optics and beta-
tron tunes to be kept the same at all energies, to avoid 
crossing betatron resonances. This places stringent (and 
non-linear) requirements on the spatial variation of the 
magnetic field, leading to some engineering challenges. 

In recent years, the possibility of dropping the scaling 
requirement has been explored – in particular for muons, 
which must be accelerated (and pass through resonances) 
very quickly. Moreover, using constant-gradient “linear” 
magnets greatly increases dynamic aperture and simplifies 
construction, while employing the strongest possible 
gradients minimizes the real aperture. Johnstone et al.[1] 
introduced this linear non-scaling approach, showing that 
it would be very advantageous to use superconducting 
magnets with positively bending Ds stronger and longer 
than the Fs (i.e. both Bd and |Bf| decrease outwards). The 
radial orbit spread could be reduced (allowing the use of 
smaller vacuum chambers and magnets), and the orbit 
length C(p) shortened and made to pass through a 
minimum instead of rising monotonically. The variation in 
orbit period is thereby reduced, allowing the use of high-Q 
fixed-frequency rf. The minimum in C(p) is obtained by 
striking a balance between two effects which tend to 
increase it - larger radii of curvature at high p, and greater 
orbit scalloping at low p. 

Previous work by the authors[2,3] has shown that a 
simple model, treating the magnets as thin lenses, suffices 
to derive expressions for the basic orbit shape and its 

dependence on momentum and other parameters, reveal-
ing the parabolic variation of C(p) and the potentiality for 
very high momentum compaction. For symmetric F0D0 or 
triplet cells: 

 C(p) = C(pm) + (12π2/q2μ2N ℓ) (p - pm)2  
where N is the number of cells, q is the charge, μ is the 
magnet strength (gradient × length - assumed equal for F 
and D), and ℓ is the (shorter) FD spacing. The orbit radii r 
show a similar p dependence, though with distinct pm. 

As might be expected from the simplicity of the model, 
its quantitative predictions do not agree exactly with those 
obtained using lattice codes such as MAD,COSY,or PTC. 
For a representative selection of lattices, the agreement as 
to circumference was found to vary between 1% and 6% 
for F0D0, but only between 36% and 67% for triplets.  

SECTOR-MAGNET MODEL 
As it seemed of interest to pursue the analytic approach 

with something more realistic, but still tractable, we next 
developed a model assuming constant-gradient sector-
magnets set with neighbouring edges parallel. The initial 
work[4,5], for triplet and F0D0 lattices, gave formulae for 
orbit radii and circumference yielding values in fair 
agreement with those produced by the lattice codes (ass-
uming hard-edge magnets). A later paper [6] amplified 
this work, extending it to sector doublets, and also deriv-
ing the explicit momentum dependence of r(p) and C(p).  

Here we consider, as well as sector magnets, the use of 
parallel-ended F and D quadrupoles (as proposed for the 
NS-FFAG prototype, EMMA [7]), and also report some 
numerical results for both types of doublet. First, though, 
we review the sector doublet case. The sector magnets are 
assumed set with their edges parallel, separated by drifts 
of length ℓ and L (see Fig. 1), with their opening angles 

denoted by D and F where D - F = 2π/N. Note that doublet 
cells lack the reflection symmetry of triplet or F0D0 cells. 
The magnet field strengths Bi = Bi0 + Bi'x (where i stands 
for f or d) are arranged so that for some reference moment-
um p0 = qBd0 d = qBf0 f the closed equilibrium orbit (CEO) 

Figure 1: Orbits in a sector doublet cell. 

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN009

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D01 Beam Optics - Lattices, Correction Schemes, Transport

3241



follows a centred circular arc of radius ρi0 = d or f within 
each magnet, entering and leaving each edge perpendic-
ularly. Radial displacements x are measured relative to 
this "reference orbit".  

The geometric parameters of the reference orbit may be 
conveniently described in a complex plane centred at its 
entry point into the D magnet, with the real axis outwards 
along the sector edge, at an angle G with respect to the 
radius vector (length R) from the machine centre. Follow-
ing the orbit the length of the cell, it may be seen that: 

    Re-iG(e2πi/N – 1) = –d + (d + f + iℓ)eiD – (f – iL)e2πi/N, 
providing two real equations which may be solved for the 
angle G, and one of  D, d, or f, given the other two and N, 
R, ℓ and L. 

For other momenta p = p0 + Δp there are also local EOs 
within each magnet - circular arcs displaced from the 
reference orbit x = 0 by Xf(p) and Xd(p) where 

Here the field indices nd0  ≡ −Bd'd /Bd0  and nf0  ≡ +Bf'f /Bf0. 
Within each magnet the CEO follows a betatron oscillat-
ion (sinusoidal in F, hyperbolic in D) of amplitude Af or Ad 
about the local EO for that momentum.  

If the phase advances at the ends of the long straight are 
denoted ψL and φL, the betatron displacements and diverg-
ences at the magnet edges are: 

 
 
 
 
 
 

where the phase advances and divergence 

and λf  ≡ √(1 – nf)/f,  λd  ≡ √(nd – 1)/d, and  nf, nd are 
evaluated at Xf, Xd. 

Writing  Cd ≡ Ad coshψL, Sd ≡ Ad sinhψL, 

 Cf  ≡ Af cosφL,  Sf  ≡ Af sinφL , 

 ΔX ≡ Xf - Xd , 

and matching the divergences and displacements over the 
two drifts, so that: 

χf = χd ≡ χfd,  xf - xd = ℓ tan χfd,   
χfL = χdL ≡ χfdL xfL - xdL = ℓ tan χfdL, 

yields four linear equations in Cd , Sd , Cf , Sf : 

λfSf = λdSd = -(Cf - Cd + ΔX)/L 

λf (Sf cosφ + Cf sinφ) = λd(Sd coshψ + Cd sinhψ)  

= (ΔX + Cf cosφ − Sf sinφ − Cd coshψ − Sd sinhψ)/ ℓ. 
The solutions are: 

Cd = (ΔX/M){(1−cosφ)(1+coshψ) + λf(L+ℓcoshψ)sinφ 
+ (λf /λd)sinφsinhψ} 

Cf = (ΔX/M){(1+cosφ)(coshψ−1) + λd(L+ℓcosφ)sinhψ 
                         + (λd /λf)sinφsinhψ} 
Sd = (ΔX/M){(cosφ−1)sinhψ − λf ℓsinφsinhψ 

     + (λf /λd)(1−coshψ)sinφ 

Sf = (ΔX/M){(1− coshψ)sinφ − λd ℓ sinφsinhψ 
          − (λd /λf)(1− ℓcosφsinhψ) 
M= 2(1−cosφcoshψ)+(ℓ+L)(λf coshψsinφ−λdcosφsinhψ) 

 +λd λf ℓLsinφ sinhψ+[(λf /λd)−(λd /λf)]sinφ sinhψ. 
These can be used to obtain explicit formulae for Ad , 

ψL , Af , and φL, and to compute the offsets x(p,θ) for any 
azimuthal angle θ. We can also integrate along the various 
orbit segments (F, ℓ, D, L) to find the deviations in path 
length between momenta p and p0 (ignoring negligible 
higher-order terms in Af /f and Ad /d): 

 
 

 

 

 
 
 
 
 
 
 
 
Table 1 compares values of xfL, xdL and ΔC = N ΣΔsi 

computed for sector doublet lattices designed by Berg[8] 
and Koscielniak and Johnstone [9] with those obtained by 
tracking. While the agreement is good for the offsets 
(<5% discrepancy), it is less so for ΔC, particularly for 
pmin. ΔC seems especially sensitive to small errors in the 
amplitudes Ad and Af ; if these are adjusted to give exact 
agreement with the tracked offsets (tabulated as ΔC*), the 
discrepancies drop to 5-10%. The basic source of error is 
probably the use of ni values computed at the local EO, 
which differ significantly from those on the orbit segment.  

Table 1: Formulae (yellow) & tracking (blue) compared. 

QUADRUPOLE DOUBLET 
An alternative to sectors is to use parallel-ended 

constant-gradient F and D magnets (lengths Lf , Ld) - i.e. 
quadrupoles where the trajectories all lie to one side of 
their axes (not necessarily coincident), so that they prov-
ide both focusing and bending. We follow the arrange-
ment proposed for EMMA [7] where the F and D axes are 
set parallel. No reference orbit or momentum is defined by 
the orbit geometry; instead an N-sided reference polygon 
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            Sectors[8]            Sectors[9]  Quadrupoles
C (m)          436.5              15.54             16.57

N           101            42            42
E( MeV) 10,000 20,000 10 20 10 20
x dL (mm) 3.2 39.2 -1.3 5.5 -0.6 7.3
Tracked 5.3 39.7 -3.3 6.6 0.1 7.5

x fL (mm) -26.8 68.6 -8.4 9.4 -8.3 11.9
Tracked -27.6 73.5 -8.8 9.0 -6.3 12.3
ΔC (mm) 166 237 20 41 30 45
ΔC* (mm) 195 206
Tracked 211 217 34 34 37 37
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is defined close to the mid-momentum CEO, with the F 
and D axes for each cell set parallel to one of the sides, 
offset by XF and XD respectively (Fig. 2). Displacements 
x(p,z) are measured relative to the reference polygon. The 
figure clearly illustrates how the greater wiggle in the 
low-energy orbits enables their circumference to match 
that of the high-energy ones at larger radius. 

Figure 2: Orbits in a quadrupole doublet cell. 
 
As before, the CEO for each momentum is made up of 

sinusoidal, hyperbolic and straight segments. Writing 
kf ≡ √(q|Bf'|/p),  kd ≡ √(q|Bd'|/p), and φ ≡ kf Lf , ψ ≡ kd Ld, 
then the displacements and divergences at the magnet 
edges are given by: 

Matching displacements and divergences, we find four 
equations for Cf ≡ Af cosφ, etc., very similar to those 
above, but in two cases now non-linear:  

arctan(kfSf) = arctan(kdSd) − 2π/N; 

kfSf [L + (XD−Cd)sin(2π/N)] = XF−Cf − (XD−Cd)cos(2π/N); 

kf(Sf cosφ + Cf sinφ) = kd(Sd coshψ + Cd sinhψ)  

= (XF − XD + Cf cosφ − Sf sinφ − Cd coshψ − Sd sinhψ)/ℓ. 
Explicit solutions to these equations have not been found 
for the general case, although Sd, Cd and Cf  can be expr-
essed fairly simply in terms of  Sf . Numerical solutions 
can be found, however, allowing Ad , ψL , Af , φL, and the 
offsets x(p,z) to be calculated, and are discussed below. 

Integrating along the various orbit segments (LD, ℓ, LF, 
L) to find the deviations in path length between momenta, 
we find: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Energy variation of time of flight in one cell. 
 

 The formulae for xfL, xdL and ΔC = N ΣΔsi have been 
evaluated for the current EMMA baseline lattice[10], and 
the results are shown in Table 1, along with those obtain-
ed by tracking. Considering that the latter included fring-
ing field effects, while our model assumes hard-edge 
magnets, the agreement is remarkably close. Fig. 3 shows 
the energy variation of time of flight Δs/βc through one 
cell. Just as for the sector magnets, there is a tendency for 
the model to underestimate the path and time differences 
at low energy, and overestimate them at high energy.  

CONCLUSIONS 
The hard-edge magnet model presented here for linear 

non-scaling FFAGs with doublet lattices cannot supplant 
orbit tracking codes for accurate determination of the orbit 
properties. It does, however, provide a simple tool to 
assist in the choice of magnet parameters in the early 
stages of machine design. 
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