
STABILITY THRESHOLDS FOR TRANSVERSE DIPOLE MODES WITH
NONLINEAR SPACE CHARGE, CHROMATICITY AND OCTUPOLES

V. Kornilov, O. Boine-Frankenheim and I. Hofmann, GSI, Planckstr. 1, 64291 Darmstadt, Germany

Abstract

Transverse stability due to combinations of chromaticity
effect, nonlinear space charge and octupoles of different
polarities plays an important role in the determination of
the impedance budget for the FAIR synchrotrons. Differ-
ent analytic approaches have been suggested, for which no
direct comparison has been made so far. In order to clarify
this issue we perform numerical investigations employing
the particle tracking code PATRIC and compare results of
simulation scans with predictions of a dispersion relation.

INTRODUCTION

Space charge effects play an important role in many ex-
isting and future high intensity ring accelerators, especially
at injection energies or close to transition. The role of space
charge is particularly important for the envisaged opera-
tion with high quality and high intensity beam in the FAIR
synchrotrons [1]. Landau damping due to the finite mo-
mentum spread and chromaticity belongs to the damping
mechanisms of transverse dipole modes, alternatively oc-
tupoles can be installed. For accurate predictions of stabil-
ity thresholds the effect of the space charge nonlinearity—
i.e., the amplitude-dependent incoherent tune shift due
to non-homogenous transverse beam profile—can become
important. One of the first attempts to describe the influ-
ence of nonlinear space charge was made in Ref. [2] with a
dispersion relation based on a heuristic derivation. It was
concluded that nonlinear space charge alone does not pro-
vide damping, but combined with an external nonlinearity
(e.g., an octupole) it results in a significantly larger stability
area than that due to the octupole alone. It was also shown
that for one of the octupole polarities the stability enhance-
ment is stronger than for the other polarity. This model was
later applied to the LHC at injection in [3] and has been ex-
tended in [4], where tune shifts due to momentum spread
and chromaticity have been included. The transverse sta-
bility for the combination of nonlinear space charge with
octupoles has been also studied using a more elaborated
analytic model in [5], where modifications of the stability
boundary due to nonlinear space charge were confirmed.

However, there has been still some uncertainty about the
role of nonlinear space charge. Doubts have been raised
whether the nonlinearity in the space charge force should
have an effect, or linear betatron oscillations can be as-
sumed for a stability analysis. The predictions of the dis-
persion relations have not been directly compared with ex-
periments, computer simulations, or with each other.

To resolve uncertainties we perform particle-in-cell sim-
ulations with the code PATRIC [6]. Combinations of non-

linear space charge with chromaticity and with an octupole
are considered. In parallel, we solve the dispersion rela-
tion from Ref. [4] in an approximate manner and use it as
a guide to understand the physical effects and to choose
the most interesting cases for direct comparisons. In par-
ticular, we study the case of strong space charge and weak
octupoles, as it resembles the situation in the FAIR syn-
chrotrons.

PARTICLE-IN-CELL SIMULATIONS

The 3D particle-in-cell tracking code PATRIC [6] is used
for simulation scans with self-consistent 2D space charge,
coupling to transverse impedances, chromaticity and non-
linear lattice effects. For self-consistent space charge, two
solvers of the Poisson equation are implemented, for rect-
angular and elliptic boundary conditions with arbitrary side
ratio. The transverse impedance implementation allows to
model arbitrary impedance spectra. Details of the imple-
mentation can be found in Ref. [6]. For coasting beams,
the horizontal impedance kick per turn can be formulated
as

Δx′(t) =
Nq2

p0

[
− x(t) Im(Z⊥) +

dx
dt

(t)
Re(Z⊥)
Re(Ω)

]
, (1)

where x is the beam mass center in the horizontal plane,
Z⊥(Ω) is the transverse impedance which causes the co-
herent tune shift ΔQcoh, Ω is the coherent frequency which
we observe. Note that under the impedance Z⊥ we un-
derstand only the interaction with the beam surrounding,
which does not include e.g. the direct space charge force.

The aim of our simulation studies is to obtain the stabil-
ity boundary in the complex Z⊥ impedance plan. Hence,
series of simulations have been performed varying both
Re(Z⊥) and Im(Z⊥). As a result, a direct comparison
of PIC simulations with a dispersion relation can be con-
ducted. For the shift of the coherent frequency the effect of
the image charges from the conducting wall must be taken
into account.

The simulation model was chosen in a way to resemble
the beam physics model underlying the dispersion relation:
the beams were matched in rms size, a constant focusing
model was used for the lattice. As the initial transverse
distribution we use a waterbag distribution. For the lon-
gitudinal momentum, a Gaussian distribution is assumed.
Coasting beam parameters similar to the ones foreseen in
the SIS 18 have been assumed, with the factor 5 larger in-
tensity to make growth times smaller for reasonable com-
puting times. The other parameters (momentum spreads
etc.) were then scaled to achieve the same normalized
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impedances V +iU ∝ Z⊥. External nonlinearity was mod-
elled with the cubic component of the octupole magnetic
field Bx = −K3

Bρ
6 y

3, etc. This cubic component of the
magnetic field causes an incoherent tune shift, which grows
in the absolute value with amplitude ΔQoct(a) ∝ −K3a

2.
Since space charge reduces the tune shift, there is a certain
octupole polarity (in this case a negative K3), which en-
hances the effect of nonlinear space-charge and is referred
here as the advantageous polarity. The opposite case we
denote as the disadvantageous polarity.

The incoherent tune shifts are different for each individ-
ual particle. Hence, there are characteristic tune spreads
which we denote as δQsc for the space-charge tune spread,
δQoct for that induced by the octupole nonlinearity and
δQξ for the tune spread due to chromaticity. To indi-
cate the strength of the octupole nonlinearity in compar-
ison with nonlinear space charge we use the parameter
χoct = δQoct/δQsc, and for the chromaticity effect we
use χξ = δQξ/δQsc.

DISPERSION RELATION

By following closely the approach given in Ref. [4] the
dispersion relation for the coherent mode frequency Ω in
the horizontal plane is constructed,

∫
ΔQcoh − ΔQinc

Ω/ω0 − (Qex + ΔQinc)

(
−a

2

2
dψa

da

)
×

×b ψb(b) ψp(p) da db dp = 1 , (2)

where ψa, ψb and ψp are the corresponding distribution
functions normalized as

∫
aψada = 1,

∫
b ψbdb = 1 and∫

ψpdp = 1; ω0 is the revolution frequency. Qex includes
the bare tune plus tune shifts due to external nonlinearities
and chromaticity effects,

Qex(a, b, p) = Q0 + ΔQoct(a, b) + ΔQξ(p) . (3)

For the case with nonlinear space charge only, the dis-
persion relation Eq. (2) predicts no damping, even if the
coherent tune overlaps the incoherent tune spectrum.

The dispersion relation Eq. (2) is solved numerically
by direct three-dimensional integration. The amplitude-
dependent incoherent tune due to space charge is estimated
numerically for all individual amplitude combinations by
averaging over particle trajectories, which is an approx-
imation. The results are validated for distributions with
analytic solutions. Arbitrary distributions ψa and ψb can
be taken, but in this work we only consider the waterbag
distribution. The change in the density distribution due to
space charge is neglected. Including the external nonlin-
earity for Qex described above, the frequency shift of the
classical anharmonic oscillator can be taken into account
analytically, ΔQoct(a) = −(βc)2/(16ωβ0ω0) K3a

2.
Examples for the solutions of the dispersion relation

Eq. (2) are presented in Fig. 1. These stability diagrams
show the contour level for Im(Ω) = 0 in the normalized
impedance plane. The stable areas are the regions enclosed

by the curves and by the U−axis. In Figure 1 (top) the sta-
bility boundary for an octupole alone (dashed line) is pre-
sented. It is compared with the stability boundary for the
combination (solid line) of the same octupole with non-
linear space charge for the waterbag distribution. An oc-
tupole of the advantageous polarity is considered, the rel-
ative strength of the nonlinearities is characterized by the
parameter χoct ≈ 0.12. Figure 1 (bottom) compares stabil-
ity diagrams for the chromaticity effect only (dashed line)
and for the combination (solid line) with nonlinear space
charge for the waterbag distribution. The incoherent tune
spreads correspond here to χξ ≈ 0.2.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0  0.005  0.01  0.015  0.02  0.025  0.03
U

V

octupole with
nonlinear space charge

octupole only

octupole with
nonlinear space charge

octupole only

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0  0.005  0.01  0.015  0.02  0.025

U

V

chromaticity with
nonlinear space charge

chromaticity only

Figure 1: Stability diagrams obtained with the dispersion
relation Eq. (2). Top: for an octupole only and for a combi-
nation of this octupole with nonlinear space charge (wa-
terbag distribution); bottom: for the chromaticity effect
only and for the combination with nonlinear space charge.

COMPARISON RESULTS

For the case with nonlinear space charge only, i.e. with-
out external nonlinearities, extensive simulations scan with
the code PATRIC for different Re(Z⊥) and Im(Z⊥) did
not indicate stability for finite real impedances, which sup-
ports the prediction of the dispersion relation Eq. (2).

In order to compare the predictions of the dispersion
relation Eq. (2) with PIC simulations for the interplay of
an octupole with nonlinear space charge, we consider the
same conditions as those assumed to obtain results in
Fig. 1. Results of the comparison for the case with nonlin-
ear space charge are presented in Fig. 2, top. The curve is
the stability boundary from Fig. 1, the simulations scans are
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shown with squares (unstable) and crosses (stable), where
each of these symbols is the outcome of a different simula-
tion run. The octupole has the advantageous polarity here.
PATRIC simulations confirm the enlargement of the stabil-
ity along Im(Z⊥) (regarding the case with an octupole
only) and the extent of the stability area in Re(Z⊥), as
it is predicted by the dispersion relation Eq. (2).

For the case of an octupole with the disadvantageous
polarity the dispersion relation Eq. (2) yields the stability
boundary, which is presented in Fig. 2, bottom. Here, an
octupole with the same modulus strength |K3|, but with the
opposite polarity with respect to Fig. 2 (top) is assumed. A
comparison between the plots in Fig. 2 shows that the usage
of an octupole with the disadvantageous polarity substan-
tially reduces the stability area along the Re(Z⊥) axis.
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Figure 2: Combination of nonlinear space-charge and an
octupole with the advantageous polarity (top), disadvanta-
geous polarity (bottom). The symbols are the results of
simulations, the lines are stability boundaries from the dis-
persion relation.

As it was already mentioned above (see Fig. 1, bottom),
the dispersion relation Eq. (2) suggests that inclusion of
nonlinearity due to space charge can significantly modify
the stability due to chromaticity and momentum spread.
Results of our simulation scans with the PATRIC code for
this case are presented in Fig. 3. There is a good agreement

in the extent of the stability area in Re(Z⊥), but for the
U -axis our PATRIC simulations reveal only approximately
half of the stability width as given by the dispersion rela-
tion.
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Figure 3: Combination of chromatic effects and nonlinear
space charge.

CONCLUSIONS

The interplay of an octupole with nonlinear space charge
can strongly modify the stability properties, especially for
a weak octupole (which induces smaller tune spreads than
that due to nonlinear space charge). The width of the sta-
bility area along the imaginary impedance axis is deter-
mined by the tune spread caused by nonlinear space charge,
while the extent of the stability area in Re(Z⊥) depends on
the octupole strength. For weak space charge the stability
area is determined by the octupole. Our PATRIC simula-
tion scans confirm these conclusions. Also, simulations
confirm the prediction of the dispersion relation that us-
ing an octupole with the disadvantageous polarity substan-
tially reduces the stability area by decreasing the stability
thresholds in Re(Z⊥). Landau damping due to chromatic-
ity, which often plays a central role in the transverse stabil-
ity analysis, can also be strongly modified by the inclusion
of nonlinear space charge.
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