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Abstract

The Napoly integral for the wake potential calculations
in the axisymmetric structure is a very useful method be-
cause the integration of E, field can be confined in afinite
length instead of the infinite length by deforming the inte-
gration path, which reduces CPU time for the accurate cal-
culations. However, his original method could not be ap-
plied to the transverse wake potentialsin a structure where
the two beam tubes on both sides have unequal radii. In
this case, the integration path needs to be a straight line
and the integration stretches out to an infinite in principle.
We generalize the Napoly integrals so that integrals are al-
ways confined in a finite length even when the two beam
tubes have unequal radii, for both longitudinal and trans-
verse wake potential calculations. The extended method
has been successfully implemented to ABCI code.

INTRODUCTION

Calculating wake potentials is an important issue in the
design of accelerators. Napoly et. al.[1, 2] originally devel-
oped the method to cal culate wake potentials, wherethein-
tegration along the longitudinal direction only comes from
the path across the cavity gap. This simplification is essen-
tia for the numerical calculations, for instance, for large
structures, for short bunches et. al. to reduce computer
memory and CPU time.

However, in their technique the radii of the chamber
must be equal on both sides of the structure, for the cal-
culation of wake potentials of higher than the dipole mode.
In this paper, we generalize their method to the case that
both sides of the structure can be unequal for any mode.

THE BASIC CONCEPT AND
PREPARATIONS

The integration of vector along the closed path is zero,
when the one-form which is defined by the vector is closed.
Thisfeatureis very useful to deform the path of integration,
calculating wake potentials. Following Napoly et. al.[2],
weintroduce one-form and represent someidentitiesto pre-
pare for calculating wake potentials in the next section.

Let us consider the axisymmetric cavity as shown in
Fig.1. We use the cylindrical coordinate (r, 6, z). From
now on, we assume that the radius of the beam tube of the
downstream side a,,,; is smaller than that of the upstream
side a;,,, for simplicity (This constraint is removed in the
final expression of the wake potentid, i.e. Eq.(25)).
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Figure 1: The cavity and the integration path

Given 7y = (ro, 00 = 0), which isthe transverse coordi-
nates of the source particle, the electromagnetic fields are
expanded as follows,

(E,, By, E,)(r,0,2,t) :Z (er, ba, €)™ (r, z, t) cosmd,

(=)

(1)

(B, Eg, B,) (1,0, 2,1) :Z (br, e, bz)(m) (r, z,t) sinmé.
m=1

2

The 6-dependence of the solutions is the consequence of
the azimuthal symmetry of the system. The electromag-
netic fields can be decomposed as £ = E(*) + E() and
B = B®) 4+ B, where (E(*), B(*)) are the source fields
and (E("), B(")) are the radiated fields (which are the so-
[utions of homogeneous Maxwell equations).

Let us introduce the following definition for a generic
field:

d(2,8) = 9(z, (2, 9)), (€)
in such away that,
82(5(275) = (82 +6Ct)¢(zﬁt(zas))’ (4)

where s isthe distance behind agiven origin zo = ct inthe
exciting bunch, and t(z, s) = (z + s)/c.

D05 Code Developments and Simulation Techniques

3333



THPANO46

By using this notation, we denote the closed one-forms

gm) —

(F[e) + cbl” — el 4 b el 4 epr)) )y,
®)

pim) —

(r~m e 4 CB(ST) + égr) — b)) el p(m]m)y,

(6)

in (r, z)-plane [2]. We should notice that these one-forms
are composed of only radiated fields.

In order to deform the integration contour which appears
in the wake potential, the several useful relations should
be introduced in advance. First of al, we need the asymp-
totic expression of the radiated fields for = — +oo. If we
assume that the source field is defined by,

¢ (r,0, 2,1)
o Q Qout = cosmb r< m
 27e Als) |log rs * Z m rs ’

A§5> (r,0,z,t)

= ¢(S) (7", 0,2, t)/c7 (8)

where r~ = sup(r,ro) and r« = inf(r,ro), the radiated
fieldsfor 2 — +oo are given by,

hm e(r,z,s) = — hm e( )(r,z,s)

= lim b (r, 2, 5) = lim cb((;)(r,z,s)

= A 9
Srree (s)n; z) (9)

lim e (r,z,s) = lim b (r,z,5) =0, (10)

lim e (r, z,5) = — lim é((;)(r,z,s)

= lim b (r,z,s) = lim clg(gr)(r,z,s)

= A 11
27reg (S)n; at./) (11

lim e (r,z, 5) = lim b (r,z,s) = 0. (12)

Z—00 Z— 00

Applying these expressions to the loop integration of
Egs.(5) and (6), one can obtain the following identities:

/ D(m)(r,z,s)dlz/D(m)(r’,z’,s)dl’, (13)
Ly c

/jo [égr)(r, z, 5)} o dz = — /OO [cgg)(r, z, s)} o dz

Qe (11 "
mmeg aim  a2m )’
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/’S(m) [@in, 2, s]dl :/ ST [agut, 2, s]dl
5 D

Gin 2Q rro\ "
- drr™ —\
[ oo ()

Qin —(r r _ (m)
+ / drr™ {éy) + cbé ) _ ég ) 4+ cby)}

zZ=z1
(15)
/ Dm )am,z sldl = / Dm )aout,z s]dl
" g (60 4 ™ 4 &) _ o) (m)
drr [ + cby — cb, } ,
Aout 2=z
(16)

where r;,, and r,,; are the end radii of the contour C ex-
pressed in the upper figure of Fig.1 and the contour D and
D are described in the lower figure of Fig.1. The positions
2z, and z specify the contour C denoted in Fig.1.

When the contour D is chosen on the axis of the tubein
Eq.(16), we obtain another relation:

1 —\1(m)
/ dzc {bg)}
Ain 2 m
_/ drr™ Q /\(:l) (rg())
0 TTreQ am am

ain pm , 0w
+ / dr:z_m [éﬁ’”) + bl — el + cbﬁ’”)}
0 in

zZ=2z1

(17)

By using Egs.(15)-(17), we find that the integration of e ,
over z between —oo and z; can be replaced as,

2 [ () 1
dz le. S
m / 2 e:] —— (agumt azm )

out J —oo
X / drr™ e, + cbg — eq + cbr](m)
0

+ 2236 (2 - )

mmeo out Ain

a

zZ=z1

m

- / dr% ler + cbg — eg + cbr](m)

out

zZ=z1

Ain 1
— / drr—m [er + cbg +eg — cbr](m)‘ (18)

z=z
out 1

We should notice that the integration from —co to z; is
confined in the finite length in Egs. (17) and (18).

THE WAKE POTENTIAL FOR M > 1

The expression for the m = 0 longitudinal wake poten-
tial was aready derived by Napoly et al themselves[1, 2].
This expression can be applied to the calculation of the
wake potential for any type of structure. They also derived
the wake potentials for m > 1, only when the radii of the
chamber was equal on both sides of the structure. In this
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section, we generalize the expression of the m (s 0)-th or-

der longitudinal wake potential wim (r,0,s) to the case
that the two beam tubes have unequal radii.
The longitudinal wake potential is defined as,

Wz(m)(r,ﬂ,s) = —%/ dzE.(r,0,2,t(z,s)), (19)

where @ is total charge, which is characterized by alongi-
tudinal charge distribution A(s) normalized as,

/Z A(s)ds = 1.

The transverse wake potential, which is defined as,

(20)

Wj_m)(r, 0, 8)5—% /_Z dz(EL+vxB)(r,0,z,t(z,s)),
(21)

can be derived from the longitudinal one by applying the
Panofsky-Wenzel theorem [3]:

aswim(r, 0,5) =V W™ (r,0,s). (22)

Since the longitudinal wake potential can be rewritten by
the integration of the radiated field [¢{”)](™), we can easily
deform the integration path by using the property of the
closed one-forms. By using Egs.(13) and (14), Eq.(19) is
described as follows,

cosmf .

2Q

1
|:/ D(m)(T’/,Z/,S)dl/ + — / S(m)(""/,zl, S)dl/:|
c Aout JC

cosmb rm
X
m
2Q a’out

m m m (m)
{/ dz’ {e(r) ( — +TT) — bl (a(f—ﬁ—%)}
C r Aout r Aout
m m
d / =(r) B(T’) Aot T
o (B2
am m (m)
~(m) b(r) out r
e ) ( rm a%t):l } .

It is necessary to rewrite Eq.(23) by the rea fields instead
of the radiated fields. Since the source field is calculated
by Egs.(7) and (8), the longitudinal wake potential is ex-
pressed by

W (r,0,s) = —

(23)

cosmb r™
—X
2Q a™

out

m m m m (m)
! Aoyt T Aout r
C out out
m m
+ /dr’ [(er + cby) (a(/m + )
9 rim Aot
a r’
—ch,) [ 22 — .
o = cbi) (T/m aé’ztﬂ }
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In C-integrationin Eq.(24), the longitudinal coordinate =
substantially movesfrom —oo to z5. Thisintegration needs
to be confined in afinite length. Actually, the component
which comes from the path from the point (r = aut, 2 =
—00) to (1 = aout, z = 21) Can bereplaced by the another
expression by using Eq.(18). The general expression of the
longitudinal wake potential (which can be applied to not
only the case a,+ < a;n but also to the case apur > ain)
isgiven by,

0
Wim™(r,6,s) = ——Cozsg "
Q. m/1 1
x {WEOA(S) m \a2m  am

min(aZ}", ag;)

al e, + cbz](m)>

/ ( . —cb .
+
( ~ )/ dr' '™ er—&—cbg—eg—kcbr](m)

/ ,ler + cbg +ep — cb ](m)
d/

Z=zj5

,r/m
zZ=z1
" [e, + cby — e + cb,|(™)

a?m
Ain m z=2z
aout er+cb9+€o—6b ]0m)

r/m

zZ=ZzZ2

N /aout dr/ r m[er —+ Cbg —eg + Cbr](m)
ag

2m
Aout

} , (29

where the radial size ao, which specifies the contour C, is
defined in the upper figure of Fig.1, the notation z ; is z; in
the case Of apyr < a;y, andthat is zo in the case of a,y: >
Qin -

This formula has been implemented to ABCI code [4].
The usefulnessis examined in the reference[5] in this con-
ference.

SUMMERY

The integration path in the wake potentials can be de-
formed by using the closed one-form defined in (r, 2)-
plane. This procedure generalizes Napoly integral for any
m and for any structure. The integration of £, field over z
in an infinite length is replaced by that of electromagnetic
fieldsin afinite region (typically the cavity gap size).
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