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Abstract

A numerical solver for a Fokker-Planck equation in
a stochastic momentum cooling process by using a CIP
method is developed. The Fokker-Planck equation is sep-
arated to a coherent phase and an incoherent phase for a
numerical calculation procedure. The incoherent term is
written as the diffusion equation, while the coherent term
is described by the advection equation. For solving the ad-
vection term of the equation, we use the CIP method, and
the results are compared with other numerical schemes. It
is found that the rational function based CIP method is ef-
fective as the numerical solver for the stochastic momen-
tum cooling model.

INTRODUCTION

Stochastic momentum cooling is operated to obtain a
high-density beam within a small momentum spread for
experiments.

A Fokker-Planck equation is used as a powerful tool for
investigating the stochastic momentum cooling process [1].
The cooling term is described as the advection term, and
the diffusion term is occurred by the beam signal and the
amplifier noises [2]. The Fokker-Planck equation can be
numerically solved as the advection-diffusion equation.

The Constrained Interpolation Profile (CIP) method [3]
is a useful scheme in the numerical calculation for the ad-
vection equation. Using the CIP method, we can numer-
ically solve nonlinear equations including the advection
term with less discretized grid numbers.

In this study we propose the Fokker-Planck equation
solver by using the CIP method for the stochastic cooling
model. The example calculations show good agreement for
the last COSY experimental result [4]. The other solvers
for the numerical simulation are compared for the particle
conservation law.

SOLVER WITH CIP METHOD

Fokker-Planck Equation for Model of Stochastic
Momentum Cooling

The simplified Fokker-Planck equation for a model of a
stochastic cooling is given as [1]

∂Ψ
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where Ψ ≡ Ψ(E, t) ≡ dN/dE is the distribution function,
F ≡ F (E) and D ≡ D(Ψ(E), t) are the terms for the
cooling force and diffusion coefficients, respectively. The
coherent and incoherent terms are derived by the electrical
characteristics of the real feedback system [2].

Semi-Lagrangian Approximation (Time Splitting
to Advection and Non-Advection Phases)

Eq. (1) can be split into
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and
Ψn+1 − Ψ∗

Δt
+ F

∂Ψ∗

∂E
= 0, (3)

where Δt is the time width between n+1 and n time steps,
Ψ∗ indicates the value after the non-advection phase calcu-
lation, Ψn+1 and Ψn are the values of Ψ at n+1 and n time
steps. Eq. (2) is the non-advection equation, and Eq. (3) is
the advection equation.

Discretization for Non-Advection Phase

Figure 1 shows the define positions for the physical val-
ues in discretized grids. Here i is index in the energy space
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Figure 1: Grids used in this system.

discretized. We rewrite Eq. (2) as
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, (4)

where D′ = D ∂Ψ/∂E. The discretization for the non-
advection phase Eq. (4) is as

Ψ∗
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i
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i
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where D′
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i−1)/(E′
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i−1) and D′
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i) . The discretization
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for the non-advection phase is carried out by the explicit
method for the time integration and the central difference
scheme for the spatial derivative. Consequently, we cal-
culate next equation for the time integration of the non-
advection phase,

Ψ∗
i = Ψn

i − Δt Ψn
i
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Ei+1 − Ei
+

Δt

Ei+1 − Ei(
Di+1

Ψn
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i

E′
i+1 − E′

i

− Di

Ψn
i − Ψn

i−1

E′
i − E′

i−1

)
. (6)

Discretization for Advection Phase

The CIP method [3] can be applied to solve the advection
phase Eq. (3) as

Ψn+1
i = ai ξ3 + bi ξ2 + gn

i ξ + fn
i , (7)

gn+1
i = 3ai ξ2 + 2bi ξ + gn

i , (8)

where gn
i means the spatial derivative of Ψn

i , ξ = −FΔt,
and the coefficients

ai =
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, (9)
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Δ2
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Δ
, (10)

where

iup =
{

i + 1 (F ≤ 0),
i − 1 (F ≥ 0), (11)

and Δ = Eiup − Ei. After the calculation for the non-
advection phase, the above calculations are operated for the
advection phase.

Implimentation of Derivative Coefficient for Non-
Advection Phase

We should calculate the non-advection phase of the
derivative g ≡ ∂Ψ/∂E. Eq. (1) is rewritten by
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where
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As mentioned in previous subsection, we can also split the
equation into
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=
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, (14)
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= 0. (15)

We compute next equation for the derivative of the non-
advection phase Eq. (14),
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Eq. (15) was already solved by Eq. (8) using the CIP
method.

Calculation Procedure

By using the equations discussed previously the numeri-
cal calculation procedure is as follows;

1. Set initial conditions

2. Prepare diffusion coefficient Di

3. Calculate Eq. (6)

4. Calculate Eq. (16)

5. Calculate advection phase by the CIP method

6. Repeat from 2. to 5. with time advances

SIMULATION EXAMPLES

We numerically simulate the stochastic momentum cool-
ing process by using the procedures described in the previ-
ous section. The example calculation is performed by us-
ing the last COSY experimental data [4]. The condition is
summarized as Table 1.

Table 1: Parameters for numerical simulations
Beam

Momentum 3.224 GeV/c
Total energy 3.358 GeV

Kinetic energy 2.42 GeV
Particle number 1010

Energy spread (1σ) 0.774 MeV
Ring

Dispersion -0.1
Momentum acceptance +/- 1.5×10−3

Stochastic cooling system
Band width 1 ∼ 1.8 GHz

Effective temperature 80 K
Electrode length 32 mm
Electrode width 20 mm

Gap height 20 mm
Impedance 50 Ω

Number pickup and kicker 24
TOF from pickup to kicker 0.3229 μsec

System delay -0.04 ns

Figures 2 and 3 show the particle (proton) distributions
in the calculated and experimental results. Figure 4 shows
the momentum spread (1σ) during the cooling operation in
the calculated and experimental results. It is confirmed that
the numerical solver quite well represents the experimental
data.

Figure 5 shows the particle number during the another
cooling operation condition at each numerical scheme used
for the advection term. The ”Up-Wind” label indicates the
case by using the 1st-order up-wind method for the ad-
vection term. The ”CIP with MmB” and ”CIP” labels are
for the solvers by using the CIP method with and without
Maximum and Minimum Bonds (MmB) scheme [5]. The
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Figure 2: Simulation result for the system gain at 96 db.
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Figure 3: Experimental result [4] for same condition at
Fig. 2.

”RCIP” shows the calculation result for the rational func-
tion based CIP (RCIP) method [6]. In the case of ”Up-
Wind”, the conservation law is largely violated as shown in
Fig. 5. The result for the CIP method gives an unphysical
phenomena after the long time beam cooling, because the
distribution function has the quite sharp distribution at the
center due to the stochastic cooling. The solver using the
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Figure 4: Momentum spread during the stochastic cooling.
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Figure 5: Particle number at each calculation method for
the conservation law check.

CIP method with MmB also causes the unphysical parti-
cle losses after the long term operation. We can obtain the
good result in the case for the RCIP method as shown in
Fig. 5.

CONCLUSIONS

We proposed the Fokker-Planck equation solver based
on the CIP method for the stochastic momentum cooling
model. With this study, we have confirmed that the numer-
ical solver quite well represents the experimental data. Us-
ing the RCIP method, the conservation law was maintained
even in the calculations for the long term operation. Con-
sequently, the developed numerical solver is a useful tool
to investigate the stochastic momentum cooling process.

Using the developed solver, we will be able to predict
quite accurately the stochastic cooling process of notch fil-
ter in the storage ring such as HESR of FAIR project [7] in
our future work.
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