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Abstract

A new Beam-Beam simulation code based on a 3D PIC
method has been developed. Taking into account to the full
extent the three-dimensional nature of interaction can be
useful for studies of a pinch effect at large crossing angles
in ILC and Crab Waist properties in SuperB Factory. The
numerical examples of the electron and positron bunches
movement and collision simulation are presented.

INTRODUCTION

Today the most elaborated method of numerical simu-
lation of beam-beam effects for relativistic charged parti-
cles is based on solution of Poisson equation with bound-
ary conditions [1]. Both colliding bunches are divided into
macroparticle slices, and then the two-dimensional field of
transverse forces is calculated for each slice. This quasi-
three-dimensional approach is used for studying the prob-
lem of ”strong-strong” interaction [2].

However, reduction to the 2D problem, where the longi-
tudinal motion is simulated by ”rearrangement” of slices,
can not completely cover the longitudinal effects, which
are of particular importance for colliding beams with su-
perhigh densities such as in ILC and SuperB Projects [3, 4].
For example, at the disruption parameter [5] D > 5 a single
pass collision makes possible strong compression (pinch-
ing) and even disruption of the bunch. In this case it is of in-
terest to study a role of longitudinal electric fields induced
due to bunch compression at very short lengths ∼ D−1Lb

(the beam length in a liner supercollider may be L b ∼ 100
microns). 3D PIC (Particle-In-Cell)-code can include in
principle all classical electromagnetic effects (for example,
a near-zone radiation)in beam-beam collisions in contrast
to the slice-based models. This will enable to account accu-
rately spreading of the particle energy distribution during a
single pass of counter bunches through each other. Energy
spreading may be harmful in the viewpoint of physical ex-
periment performance (SuperB) [6]. 3D PIC-code will let
simulate most closely a pinch effect at large crossing angles
in ILC as well as Crab Waist [7] properties. With advances
of the code and with the advent of its parallel supercom-
puter version it will be possible to apply it for beam-beam
simulation at large number of particle turns in a cyclic col-
lider.

Main difficulty in 3D PIC charged particle beam simu-
lation arises from a large Lorentz-factor γ >> 1. This
circumstance makes the 2D approximation justified for the

∗ nikitins@inp.nsk.su

most part, but while it makes 3D PIC code realization very
hard.

In the paper the algorithm developed to solve the Beam-
Beam problem by the 3D method of macro-particles are de-
scribed. The numerical simulation examples with a model
beam movement as well as with a strong single pass inter-
action of bunches are presented.

FORMULATION OF THE PROBLEM

In parallelepiped region [0, Lx] × [0, Ly] × [0, Lz] the
relativistic charged particle beams move along the z-axis
in the self-consistent electromagnetic fields. Each of the
beams is characterized by a shape, a particle density dis-
tribution, linear sizes as well as a position inside the re-
gion. To describe such a motion one can use the Vlasov’s
kinetic equation for the distribution function f of particles
(positrons e+ and electrons e−) and the Maxwell’s equa-
tion system in Gauss units. Let denote L, a characteristic
size of the region; c, the light speed; T = L/c, a char-

acteristic time; p0 = mec; F0 =
mec

2

L
, E0 =

mec
2

eL
,

H0 =
mec

2

eL
, ρ0 =

E0

4πL
, j0 = cρ0. Then we can write

neccesary equations in dimensionless form:

∂fe+,−

∂t
+ pe+,−

∂fe+,−

∂r
+ F e+,−

∂fe+,−

∂p
= 0, (1)

rotE = −∂H

∂t
, (2)

rotH = j +
∂E

∂t
,

divE = ne+e+ + ne−e−,

divH = 0,

where: F e+,− = E + [ve+,− , H ] is a Lorentz force;

γe+,− = 1/
√

1 − v2
e+,−) is a relativistic factor; pe+,− =

γe+,−ve+,− is a particle momentum. Particle and current
densities in the equations above are determined through the
volume integrals and the distribution functions:

ne+ =
∫

V0

fe+dp

ne− =
∫

V0

fe−dp
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j =
∫

V0

(fe+ve+e+ + fe−ve−e−)dp.

Traditional way of numerical solution relates to using
a well-milled computational grid in longitudinal direction
and increasing the computational region in transverse di-
rection. But an increase of grid is proportional to γ and
is unacceptable even for the modern computers regarding
memory volumes and operating speed. One can reduce
the work content thanks to bringing a computational region
boundary sufficiently near the beam. In this case, a trans-
verse size of region must be cut down in γ and more times
with the aim to not attain a wave zone. At that the diffi-
culties arise in determination of self-consistent initial and
boundary conditions and, in fact, - in numerical experiment
conduction. We consider the ways to get over these difficul-
ties in [8]. Initial and boundary conditions are found with
the help of the fundamental solution for the potential and
the electric field of a moving freely single charge with sub-
sequent summation of the contributions from all charges.
The boundary position corresponds to a near wave zone.

ALGORITHM DESCRIPTION

To solve the systems (1) and (2) we use the Particle-in-
Cell (PIC) method which is an universal method for col-
lisionless plasma simulations including a relativistic one
[9, 10]. The leap-frog scheme [11] is applied providing
the second order of approximation in space and time. Af-
ter initialization a following sequence of operations is per-
formed at every step of the simulation. The electromag-
netic fields are re-counted through a half-step forward. If a
particle crosses a mesh boundary its path is divided by two
ones and the formulas are applied for each of these paths.
Such a method allows to satisfy automatically the differ-
ential equation of continuity and thus to fulfil accurately
the differential Gauss law. This substantially decreases the
approximation errors and makes the algorithm more stable.
Then, using Maxwell’s equations, the electric and magnetic
fields are re-counted through one step and one half-step
more forward respectively. The cycle is repeated till desti-
nation of a required point of time.

SIMULATION EXPERIMENT RESULTS

The algorithm described has been tested in some char-
acteristic examples of a relativistic beam motion simula-
tion. In the first example the bunch consists of the mo-
noenergetic electrons moving strictly along the z-axis at
γ = 104. The particle density is distributed according
to the Gaussian law with the root-mean-square beam sizes
σx = σy = σz . The spatial distribution in a plane x − z
of the electromagnetic energy density carried by the elec-
tron bunch is plotted in Fig.1 at two points of time: t = 0
(Fig.1a) and after 320 time increments (Fig.1b) that cor-
responds to a shift compared with the bunch length. It is
shown from the figures that the structure and amplitudes
of the electromagnetic impulse are well conserved during

the motion in accordance with the task features in spite
of an exceptionally small mesh number (32 × 32 × 32).
This example is calculated with the help of middling-power
(∼ 1000 MHz) PC in 15 minutes.

Figure 1: Electromagnetic energy density distribution of
the spherical ultra-relativistic bunch (γ = 104) at two in-
stants of time.

Another example relates to the simulation of collision
of the electron and positron bunches focusing in the cen-
ter of interaction region (in I.P.). The mesh number is
60 × 60 × 120, the computational region sizes in arbitrary
units are Lx = Ly = 10−2, Lz = 1. The Gaussian density
distribution for a undisturbed beam in the crossover plane
is described by the parameters σ∗

x =
√

β∗
xεx, σ∗

y =
√

β∗
yεy

where εx and εy are the radial and vertical beam emit-
tances, respectively, β∗

x, β∗
y are the corresponding beta-

function values. The distribution function with transverse
momentums x′ and y′ in I.P. is also Gaussian with the

parameters σ∗
x′ =

√
εx/β∗

x and σ∗
y′ =

√
εy/β∗

y . In

the simulation the following basic parameters were used:
γ = 6.85 ·103; the bunch population N− = 2.63 ·1011 (the
electrons), N+ = 1.31 · 1011 (the positrons); εx = εy =
5 · 10−9 cm; β∗

x = β∗
y = 0.1 cm; σ∗

x = σ∗
y = 224 nm;

σz = 0.1 cm. Such a combination of the parameters corre-
sponds to a supercritical regime of the beam-beam interac-
tion since the disruption parameter takes a very large value:
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Dx,y = 2reNσz/[γσx,y(σx + σy)] ≈ 2.2 · 103 (N = N+

or N = N−). In Fig.2a the calculated profiles of collid-
ing beams (the red is electrons, the blue is positrons) are
presented at the instant t = 0.5 when the optical focus-
ing has just become apparent, but a collision has not begun
yet. Strong focusing effect of the counter beam field is il-
lustrated in Fig.2b. The transverse sizes of both bunches
become shrunk several times at a range of their mutual pen-
etration as compared with the case of only optical focusing
(t = 2). In succeeding instants of time, a stucture of the
bunches in a given example is completely destroyed in ac-
cordance with the theoretical prediction based on a large
value of the D parameter.

Figure 2: Results of the beam-beam collision simulation.
The transverse scale in these figures are 1000 times greater
than longitudinal one.

The calculation accuracy in our simulations is exam-
ined by tracing the energy value. In Fig.3 the upper curve
presents the relative changes of ∼ 10−9 in the total electro-
magnetic field

WF =
∫

E2 + H2

8π
dxdydz.

with a time. The lower curve shows the same in magnitude

Figure 3: Test of the energy conservation.

but of opposite sign changes in the total kinetic energy of
the particles

WK = E − E0 = me

N∑
i

(
√

1 + |pi|2 − 1).

CONCLUSION

New fully three-dimensional algorithm for beam-beam
simulation with rather high gamma-factors (∼ 103 ÷ 104

and higher) has been developed. Simulation results have
verified appropriateness of the chosen model and algo-
rithm efficiency. We attend to apply this computational
method for study of beam-beam effects in the supercollid-
ers projects.
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