
AN ELEMENTARY ANALYSIS OF COUPLED-BUNCH INSTABILITIES* 

K. M. Hock#, A. Wolski, Physics Dept, Liverpool University, Liverpool, L69 7ZE, UK and 
Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.

Abstract 
We reconsider the equations of motion of wake field 

coupled bunches in the light of recent developments in 
Delay Differential Equations.  In the case of uniform 
resistive wall in a storage ring, we demonstrate an 
alternative way to characterize the growth modes.  For 
each multibunch Fourier mode, an infinite number of time 
domain modes can arise from an exact solution of the 
equation of motion.  The growth rate as it is commonly 
defined corresponds to only one of them.  The amplitude 
of each Fourier mode can therefore evolve with time in a 
way that is not a simple exponential.  This is a result that 
has been observed in simulations of wake field coupled 
bunches.    

INTRODUCTION 
Charged particles in a storage ring generate wake fields 

as a result of impedance of the beam pipe.  This gives rise 
to coupling between bunches, and is an important source 
of instability.  In this paper, we study the effect of this 
coupling on the transverse displacement of the bunches.  
The wake fields can potentially cause this displacement to 
grow exponentially, resulting in decoherence and beam 
loss.  For simplicity, we only consider the case where the 
impedance arises from a uniform, cylindrical beam pipe 
with resistive wall, though our approach is equally valid 
in the case where additional sources of wake field (for 
example, higher-order modes in RF cavities) are present.   

Beam instabilities driven by resistive-wall wake fields 
have been widely studied.  The standard formalism is to 
transform the bunch displacements into Fourier modes.  
The equations of motion are then decoupled, and the 
amplitude of each mode is assumed to follow a simple 
exponential.  This has allowed an analytic expression for 
the growth rate to be obtained [1], and an analytic formula 
for the bunch trajectory to be derived [2].  Our study is 
motivated by the need to achieve much more challenging 
levels of beam stability in future accelerators, such as the 
ILC damping rings, and to develop a detailed 
understanding of the dynamics that develops in the 
transient regime during injection and extraction. 

  Simulation studies of bunch motion in the presence of 
coupling from wake fields show mode amplitudes that 
appear to deviate from simple exponentials [3].  In our 
analysis, we find that the standard formalism neglects the 
existence of other solutions to the equations of motion.  
This means that although the growth rate formula is valid, 
the trajectory formula is incomplete.  We derive the 
correct formula for the trajectory, and also show that this 
is valid only in the limit of small wake field. 

FORMALISM 

Equations of Motion 
The equation of motion for each bunch is given by: 
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for m = 0, 1, …, M−1.  The notation is as follows: 

xm(t) transverse displacement of the mth bunch 
ωβ betatron frequency 
W1(z)  wake function 
τ time from one bunch to the next  
N number of particles in each bunch 
r0  classical electron radius 
c  speed of light 
T0 period of revolution 
γ energy of each particle in units of its rest mass 

 
The mode is defined by the Fourier transform 

 
∑

−

=

−
=

1

0

2

)()(~ M

m

M
mi

m etxtx
μπ

μ
 (2) 

The new parameter μ represents the mode number.  In 
order to transform to modes, the equation for each bunch 
in eq. (1) is multiplied by exp(−i2πmμ/M).  The equations 
are then summed and rearranged to give a set of 
decoupled equations that can be written in the form: 
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for μ = 0, 1, …, M−1.  Substituting into eq. (3) the 
elementary solution e−iΩt, we obtain, in the case of 
resistive wall wake field, the characteristic equation:  
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where 
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In eq. (5), C is the ring circumference, b is the pipe radius 
and σ is the conductivity. 
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In the standard formalism, the approximation Ω ≈ ωβ is 
then made, to obtain: 
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from which the growth rate formula can be derived [1].  

Delay Differential Equations 
The equation of motion (1) is in fact a Delay 

Differential Equation; equations of this type are the 
subject of active research [4].  Here, we use some of the 
ideas to study eq. (3) more closely.   Eq. (4) is in fact a 
transcendental equation with an infinite number of roots.  
By rearranging this into: 
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such that the roots are just the zeros of this function, we 
can then get a snapshot of the distribution of the roots 
from a contour of the absolute value of this function.  
Figure 1 shows this contour plot for the case when the 
infinite series is truncated at N = 100.  The time variable 
has been transformed using t → t′ = t/τ. 

 
Figure 1:  Contour plot from the characteristic equation 
for mode 500, showing the distribution of roots – located 
at the centres of the concentric contours. 

The general solution is therefore given by: 
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The root in eq. (5) corresponds to root (a) in fig. 1, 

which appears in the first term on the right hand side of 
this equation.  In principle, the unknown constants A, B 
and Cn can be obtained by fitting with the initial 

conditions.  The reason why there is an infinite number of 
constants is because the initial condition is in fact an 
initial history.  If we consider the case when the series is 
truncated at N = 100, then integrating eq. (1) or (3) 
requires not only the initial values at t = 0, but also all the 
values in the time interval [−Nτ,0).  The form of eq. (8) 
also means that the mode amplitude is in general not a 
simple exponential. 

Bunch Trajectory 
In practice, it is difficult to know the initial history of 

the bunch displacements.  In order to make use of these 
roots to give a useful solution, we make the following 
interpretation of the roots.  Roots (a) and (b) are very 
close to +ωβ and −ωβ respectively.  In the limit of zero 
wake field, the right hand side of eq. (3) vanishes.  Eq. (3) 
becomes the equation for a simple harmonic oscillator, 
which has only two solutions.  These would be just the 
first two terms on the right hand side of eq. (8).  The 
infinite sum in eq. (8) may therefore be attributed to the 
presence of the wake field, which has led to the 
dependence on initial history.  The infinite sum is likely 
to behave like a Fourier sum that can be fitted to arbitrary 
functions on the interval  [−Nτ,0) [4].  If the wake field is 
small, it may be possible to neglect this sum and keep 
only the first two terms.  Then for each mode, we can 
obtain the constants A and B by specifying just the initial 
values at t = 0: 
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Inverting the transform, we get: 
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for the trajectories in real space. 
  As it turns out, there is already an accurate formula for 
root (a), given by eq. (6).  A corresponding formula can 
be derived in a similar way for root (b) by making the 
approximation that Ω ≈ −ωβ.  This gives: 
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RESULTS AND DISCUSSION 
  The above reasoning leading to the trajectory formula in 
eq. (12) is heuristic and needs to be validated.  We do so 
by comparing the analytical result with simulation.  We 
carry out the calculation using the following parameters 
for the OCS6 damping ring in the ILC [5]: 

  Circumference of ring   6695.057 m 
  Particle energy    5.0 GeV 
  Horizontal tune    52.397 
  Number of particles per bunch  2×1010  
  Number of bunches   3649 
  Beam pipe (aluminium) conductivity 3.2×1017 s-1 
  Beam pipe radius   10 mm 

The integration is carried out on eq. (3) using the method 
described in ref. [3].  The objective is to determine 
whether eq. (9) remains accurate when the initial history 
is neglected, i.e. when it is set to zero over the interval  
[−Nτ,0).  Before the actual comparison is made, however, 
we must consider the error inherent in the numerical 
integration itself.  To make an estimate of the error, we 
construct a history using eq. (9) on [−Nτ,0).  If the 
numerical integration has no error, the result of the 
integration for t > 0 will agree exactly with that of eq. (9).  
Any difference between the numerical integration and eq. 
(9) is therefore the numerical error.  Figure 2 illustrates 
the integration result for mode 500. 

 
Figure 2:  Single-mode simulation of mode 500 using 
initial history created from the analytic solution. 

We then set the initial history to zero and repeat the 
integration.  To account for the numerical error, in the 
case of mode 500 for example, we compare the zero 
history result with that in fig. 2 (which gives the result of 
the numerical integration with non-zero initial history) 
instead of eq. (9) directly.  The difference between the 
numerical integration in the two cases we refer to as the 
“history-induced error”.  We find that the history-induced 
error is fairly small and approaches a constant value at 
large turn numbers.  In the case of mode 500, the relative 
error in eq. (9) as a result of neglecting the initial history 
is about 10-5 at turn number 500.  A similar calculation for 
an individual bunch rather than an individual mode can be 
performed using eq. (12).  In the case of bunch number 

100, we find a relative error of about 0.001 at turn number 
100. 

Since the coupling between bunches arise from the 
wake field, the strength of the wake field would have a 
direct impact on the size of the history-induced error.  We 
insert on the right hand side of eq. (3) a multiplying 
factor, which we call the wake field strength, and repeat 
the error calculation for different values of this factor.  
The result for mode 500 at turn number 500 is shown in 
fig. 3.  The history-induced error is nearly proportional to 
the wake field strength.  This provides an estimate on the 
range of validity of eq. (12). 

 
Figure 3: History-induced error for mode 500 as a 
function of wake field strength. 

  Finally, it should be mentioned that in this analysis, the 
maximum growth rate remains unaffected.  The growth 
rate in the standard formalism is given by the imaginary 
part of eq. (5).  Although eq. (13) introduces a second 
growth rate for each mode, this equation is simply a 
reflection ( μμ −→ ) of eq. (5), and the maximum 
growth rate remains the same.  What this analysis 
achieves, however, is an explanation of some otherwise 
puzzling features in the simulations of coupled-bunch 
motion.  This is important if the simulation methods are to 
be applied (as intended) to cases representing more 
realistic conditions, including details of the optical 
functions and the fill patterns. 
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