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Abstract

In this paper we present high-order spectral element dis-
continuous Galerkin simulations for wake field and wake
potential calculations. Numerical discretizations are based
on body-conforming hexagonal meshes on Gauss-Lobatto-
Legendre grids. We demonstrate wake potential profiles for
cylindrically symmetric cavity structures in 3D, including
the cases for linear and quadratic transitions between two
cross sections. Wake potential calculations are carried out
on 2D surfaces for various bunch sizes.

INTRODUCTION

We have developed a large-scale computational code,
NEKCEM [5], for computing wake fields and wake poten-
tials [1, 2] in 3D structures. NEKCEM employs a high-
order numerical scheme, namely, the spectral element dis-
continuous Galerkin method [3, 4]. It features accurate and
efficient computations with high performance in parallel.

FORMULATIONS

In this section we present the governing equations to
study beam dynamics and numerical discretizations in
space and time. Formulations are used in a mixed form
with Cartesian and cylindrical coordinates for the sake of
convenience.

Maxwell’s Equations

We begin with the Maxwell equations:

µ
∂H

∂t
= −∇× E, ε

∂E

∂t
= ∇× H − J (1)

∇ · E =
ρ

ε
, ∇ · H = 0, (2)

where the current sourceJ is defined for an on-axis Gaus-
sian beam moving in thez-direction:

J = cezρ(r)ρ(z − ct), ρ(z) =
1

σz
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Conservation Form

We rewrite equation (1) into a conservation form

Q
∂q

∂t
+ ∇ · F (q) = 0 (4)

by defining

q = (Hx, Hy, Hz, Ex, Ey, Ez)
T (5)

Q = diag(µ, µ, µ, ε, ε, ε). (6)

The fluxF (q) has the following form.





0 Ez −Ey 0 −Hz Hy

−Ez 0 Ex Hz 0 −Hx

Ey −Ex 0 −Hy Hx 0





T

(7)

Numerical Discretizations

We approximate solutions to Maxwell’s equations in
the computational domainΩ as a set of body-conforming,
nonoverlapping hexagonal meshesΩe. We define a local
solutionqN on eachΩe as

qN(x, t) =

N
∑

j=0

qj(t)Lj(x), (8)

whereqj(t) is the solution atN grid pointsxj on Ωe, and
Lj(x) is the three-dimensional Legendre Lagrange inter-
polation polynomial associated with theN -nodes [3]. We
seek the local solutionsqN

(

Q
∂qN

∂t
+ ∇ · F (qN), φ

)

Ωe

= (n̂ · [F − F ∗], φ)∂Ωe ,

(9)
where the local discontinuous test function isφ = Li(x)
and the numerical fluxesF ∗ are defined as in [4].

We use the fourth-order Runge-Kutta method for time
integration.

Initial Conditions

To describe the electromagnetic fields at the presence of
the Gaussian beam for the initial time step, we first solve
the Poisson equation in two dimensions at the cross section
of the initial beam position

∇2Φ2D(r) = −ρ2D(r)

ε
(10)
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and get the two-dimensional electric field at the cross sec-
tion

E2D = −∇Φ2D(r). (11)

Then, we assign an initial electric fieldE in three di-
mensions along thez-direction, using the two-dimensional
electric fieldE2D scaled by the initial Gaussian distribu-
tion ρ(z) as

E(r, z) = E2D(r)ρ(z). (12)

Boundary Conditions

We apply the uniaxial perfectly matched layer
(UPML) [6] in the z-direction and the perfectly elec-
tric conducting (PEC) boundary [4] in the radial direction.

UPML formulations in 3D are defined as follows:

∂Hz

∂y
− ∂Hy

∂z
=

∂Dx

∂t
+

1

ε
σyDx (13)

∂Hx

∂z
− ∂Hz

∂x
=

∂Dy

∂t
+

1

ε
σzDy (14)

∂Hy

∂x
− ∂Hx

∂y
=

∂Dz

∂t
+

1

ε
σxDz, (15)

where σx = −(x/d)m(m + 1)ln(R)/2ηd, denotingd,
x, m, R, and η for PML size, PML depth, polynomial
grading, reflection error, and impedance, respectively. In
UPML, the components ofE are updated by

ε

[

∂Ex

∂t
+

σz

ε
Ex

]

=
∂Dx

∂t
+

σx

ε
Dx (16)

ε

[

∂Ey

∂t
+

σx

ε
Ey

]

=
∂Dy

∂t
+

σy

ε
Dy (17)

ε

[

∂Ez

∂t
+

σy

ε
Ez

]

=
∂Dz

∂t
+

σz

ε
Dz. (18)

A similar formula is used in UPML to update the compo-
nents ofH . In our simulations we apply UPML only in the
x-direction by choosingσy = σz = 0.

PEC boundary conditions are assigned at the boundaries
in the radial direction satisfying

n̂ × E = n̂ · H = 0. (19)

COMPUTATIONAL RESULTS

We show the performance of NEKCEM and demonstrate
the wake potential profiles for beam dynamics on various
cavity structures.

Performance

To demonstrate the performance of NEKCEM, we
compute the case with standing wave solutions for the
Maxwell’s equations with periodic boundaries on a cube
mesh. Computations are performed with 32 processors on
the Linux cluster “Jazz” at Argonne for various computa-
tional sizes by increasing the number of elements and the
degree of the polynomials. Figure 1 plots CPU time vs.

degree of freedom and errors vs. degree of freedom for dif-
ferent degrees of polynomials. The figure shows that CPU
time increases linearly depending on the degree of freedom
but is not dominated by the increases in the degree of the
polynomials. Errors are much smaller with a higher degree
of polynomial for a fixed number of grids. This result im-
plies that one can obtain better efficiency and accuracy with
the high-order method presented in this paper.

Figure 1: Performance with 32 processors on the Argonne
Linux cluster “Jazz”; showing CPU time vs. degree of free-
dom (top) and errors in log scale vs. degree of freedom
(bottom).

Wake Potentials

Figure 2 shows the electric field amplitude using con-
tour lines on a half side of a pillbox mesh with circle
cross-section radiusr = 1 and r = 2 for bunch size
σz = 1.0. The wake potential calculations are carried
out on the 2D surface atr = 1 for different bunch sizes,
σz = 0.25, 0.5, 0.75, 1.0, with a fixedσr = 0.1, which
show good agreement with ABCI results. Figure 3 shows
meshes for the cavities with linear and quadratic transitions
between circle cross sections with radius changes from
r = 1 to r = 2. Figure 4 shows wake potential calculations
carried out on the 2D surface atr = 1 for different bunch
sizes with a fixedσr = 0.1 on the meshes shown in Fig-
ure 3. Wake potentials with linear and quadratic transitions
show reasonable profiles corresponding to the changes of
the bunch sizesσz = 0.25, 0.5, 0.75, 1.0.

CONCLUSIONS

We have applied the spectral element discontinu-
ous Galerkin method to beam simulations for three-
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Figure 2: Contour lines of the electric field in amplitude on
a half side of a pillbox mesh with circle cross-section radius
r = 4 andr = 2 (top). Wake potential on the surface at
r = 1 for σz = 0.25, 0.5, 0.75, 1.0 andσr = 0.1 (bottom).

dimensional cylindrical cavities with linear and quadratic
transitions between circle cross sectons. The wake poten-
tial calculations show resonable profiles depending on the
bunch size. We are currently tracking a 1 ps beam mov-
ing through meter-scale cavities with linear and quadratic
transitions between different sizes of elliptic cross sections.
Rigorous comparisons on the wake potential calculations
with other codes will be presented in a later paper.
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Figure 3: Meshes with circle cross sections with linear
(top) and quadratic (bottom) transitions: tube radius is
r = 1 for the outgoing tubes on sides.

Figure 4: Wake potentials on the surface atr = 1 for
σz = 0.25, 0.5, 0.75, 1.0 and σr = 0.1 on the meshes
(shown in Figure 3) with linear (top) and quadratic (bot-
tom) transitions.

Proceedings of PAC07, Albuquerque, New Mexico, USA THPAN091

05 Beam Dynamics and Electromagnetic Fields

1-4244-0917-9/07/$25.00 c©2007 IEEE

D05 Code Developments and Simulation Techniques

3437


