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Abstract

A warm-fluid theory of a thermal equilibrium for a
rotating charged—particle beam in a periodic solenoidal
focusing magnetic field is presented. The warm-fluid
equilibrium equations are solved in the paraxial
approximation. It is shown that the flow velocity for the
thermal equilibrium corresponds to periodic rotation and
radial pulsation. The equation of state for the thermal
equilibrium is adiabatic. The beam envelope equation and
self-consistent Poisson’s equation are derived. The
comparison between analytically computed density
profiles and the recent experimental results from
University of Maryland Electron Ring (UMER) is
presented. Temperature effects in the beam equilibria are
investigated. The radial confinement of the beam is
discussed.

INTRODUCTION

Many charged-particle  beam  experiments and
applications, such as particle accelerators, spallation
neutron sources, high-power microwave sources and high-
energy colliders, use high-intensity beams of charged
particles. For such systems, beams of high quality (i.e.,
low emittance, high current, small energy spread, and low
beam loss) are desired. The processes of emittance growth
and beam losses are related to the evolution of particle
beams in non-equilibrium states. It is crucial to find and
study equilibrium states of charged-particle beams to
prevent beam losses, to preserve beam emittance, to
provide operational stability, and to control chaotic
particle motion and halo formation.

Although several kinetic equilibria have been
discovered for periodically focused intense charged-
particle beams [1-3], periodically focused thermal beam
equilibrium has not been reported until our present work,
which includes both a kinetic treatment presented
elsewhere [4, 5] and a warm-fluid treatment presented in
this paper.

In this paper, we present a warm-fluid equilibrium
theory of a new thermal charged-particle beam in a
periodic solenoidal focusing field. Solving the warm-fluid
equations in the paraxial approximation, we obtain the
beam density and flow velocity. We derive the self-
consistent rms beam envelope equation and the self-
consistent Poisson equation, governing the beam density
and potential distributions. For such thermal beam
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equilibria, temperature effects are found to play an
important role. Due to temperature effects, the beam
profile is bell-shaped, which is a more redistic
representation of the beam density than the uniform
density profile in previous theories (see, for example, Ref.
1-3). We present the comparison between our analytical
calculation and recent experimental results from
UMER [6]. Finally, we discuss the radial confinement of
the beam.

WARM-FLUID BEAM EQUILIBRIUM

We consider a thin, continuous, axisymmetric, single-
species charged-particle beam, propagating with constant
axia velocity f,cé, through an applied periodic
solenoidal magnetic focusing field. The applied periodic

solenoidal focusing field inside the beam can be
approximated by

B (15 =~ BLOIr& +B,(98, . (D

where z=s is the axia coordinate, r is the radia
distance from the beam axis, prime denotes the derivative
with respect to s, and B,(s)=B,(s+S) is the axial
magnetic field, which is periodic along the z—axis with
periodicity length S.

We solve the warm-fluid equilibrium (9/dt=0)
equations in the paraxial approximation with the adiabatic
equation of state [7, 8],

T, (8)rsrims(s) = const 2

where T, (s) is the transverse beam temperature which

remains constant across the cross-section of the beam, and
Morms (S) 1S the root-mean-square (rms) radius of the beam,

defined by r2.(s)= Nglzzzjdr r¥n,(r,s).
0

The equilibrium flow velocity profile has the form
[7. 8]

VL(r,S):r%ﬁbCér+rQb(S)é9’ )

which corresponds to a beam undergoing radial pulsation
and angular rotation with the angular frequency
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2,(s)=-2.(s)/2+ @, 12 /1r2,<(s). Here, Q.(s) is the
cyclotron frequency, @, and r,, are constants.

We derive the self-consistent beam equilibrium density
distribution from the radial force balance equation [7, 8],

? (K, 4g } qcb*'”(r,S)} @)
eXPyi———~| —+ - ’
{ 4351 { 2 rbzrms(s) 7§ KeT, (S)

where C is a constant in the paraxia approximation and
assures that the total number of particles per unit axial

length is conserved, K =2N,q?/7mp2c? is the self-
field perveance and &2 = kgT, (S)r2 (s)/2m»,B2%c? is
the rms thermal emittance of the beam, which is a

constant.
In Eq. (4), the scalar potential for the self-electric field

¢%"(r,s) is determined self-consistently from the
Poisson equation

13{&&“ (r,s)}
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In Egs. (4) and (5), the rms beam radius ry(s) is

determined using the envelope equation for the evolution
of the rmsbeam radius[7, §],

, (6)

@m@+}xg—
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where v Kz(s) = qu(S)/Zybﬂbmz

parameter.

is the focusing

WARM-FLUID BEAM EQUILIBRIA
CALCULATIONS

In this section we present a comparison between our
analytical results and recent experimental results from
UMER experiment [6] and discuss the temperature effects
on the beam density distribution. We also show that
thermal beam equilibria exist for a wide range of
parameters and discuss the radia confinement of the
beam.

Comparison with UMER experiment

In a recent UMER experiment [6], a 5 keV electron
beam was focused by a short solenoid. The electron beam
was generated by a gridded gun and exited the gun
through an anode aperture at s=0. Bell-shaped beam
density profiles were imaged by a fluorescent screen.

Using our therma equilibrium theory, we have
calculated transverse beam density profiles of the UMER
5 keV, 6.5 mA electron beam at three axia distances:
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s=6.4cm, 11.2 cm, and 17.2 cm, as shown in solid
curvesin Fig. 1. The dashed curves are the equivalent KV
beam density profiles [2, 5]. The calculated beam density
profiles are in good agreement with the experimental
measurements (dotted curves) [6].

As the beam radius increases, the beam density profile
approaches the KV (uniform) beam density distribution,
because the beam temperature must decrease in order to

keep T,(s)r2,<(s) a constant. Here, the Debye

Iength/iDz\/yngTl(s)/qunb(O,s) is 0.54mm. The

warm-fluid beam density profile is nearly uniform up to
the beam edge where it fals rapidly within a few Debye
lengths.
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Figure 1. Normalized beam transverse density profiles of
a5keV, 6.5 mA (4g;, =30mm-mrad) electron beams at

three axial distances: s=6.4cm, 11.2 cm, and 17.2 cm.
Solid curves are anaytical results; dotted curves,
experimental measurements; dashed lines, equivalent KV
beam density distributions. The densities are normalized
to the equivalent KV beam density at s=6.4 cm.
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Radial confinement condition for the beam

There is a wide range of parameters for which the
warm-fluid beam equilibrium exists in a periodic focusing
channel. For practical purposes, it is useful to determine
the radial confinement in an average sense. In Fig. 2, we
plot the normalized angular frequency of beam rotation in

the Larmor frame, (S/o,B,c)Qy(s)+Q.(s)/2), as a
function of the effective sef-field parameter
(se)= Sz<a)§b(s)>/27§a§ﬂb2c2 for K=0.1,0.2, 1, and
10. The beam propagates in the periodic solenoidal
focusing field with S\/x,(s) = a, + & cos275/S) and
ay =8 =1.14. The beam current is kept the same while
the rms thermal emittance of the beam &, decreases.
Here, o, isthe vacuum phase advance (see, for example,

Ref. [3]), a)pb(s)z(47rq2nb(0,s)/;/bm)]/2 is the plasma
frequency, and (--) denotes the average over one axial

period S.

While Fig. 2 is computed for the specific periodic
solenoidal focusing field, we observe no change in the
Fig. 2 if we vary periodic solenoidal focusing field,
provided that the vacuum phase advance o, of the

magnetic field does not change. For any value of the
effective self-field parameter (s,) below a critical value,

a confined beam can rotate at two angular frequencies,
either positive or negative relative to the Larmor frame.

For each value of K , the maximum (critical) value of the
effective self-field parameter for a confined beam is
reached when the beam does not rotate relative to the
Larmor frame. In Fig. 3, the critical effective self-field

parameter (s,) is plotted as a function of K. The

parameter space for radial beam confinement is indicated
by the shaded region in Fig. 3.
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Figure 2. Plot of the normalized angular frequency of
beam rotation in the Larmor frame as a function of the
effective self-field parameter for normalized perveances

K =0.1,0.2, 1, and 10.
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Figure 3. Plot of the critical effective self-field parameter
(s.) @s a function of K = KS/4ey, . The shaded region
gives the parameter space for radial beam confinement.

CONCLUSIONS

We presented a warm-fluid equilibrium beam theory of
a new thermal charged-particle beam propagating through
aperiodic solenoidal focusing field. We presented the rms
beam envelope equation and the self-consistent Poisson
equation, governing the beam density and potential
distributions. We found good agreement between the
adiabatic thermal equilibrium theory and a recent UMER
experiment. The thermal beam equilibrium density profile
has a bell-shaped density profile and a uniform
temperature profile across the beam cross-section. Finally,
we discussed the radial confinement of the beam
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