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Abstract 
Grooved surface is proposed to reduce the secondary 

emission yield in a dipole and wiggler magnet of 
International Linear Collider. An analysis of the 
impedance of the grooved surface based on adaptive finite 
element is presented in this paper. The performance of the 
adaptive algorithms, based on an element-element h-
refinement technique, is assessed. The features of the 
refinement indictors, adaptation criteria and error 
estimation parameters are discussed.  

INTRODUCTION 
The strategy of Finite Element Method (FEM) is to 

divide the solution space into a large number of area or 
volume elements and derive the linear equations based on 
the physics problem.  

Generally in finite element analysis or other mesh based 
on method, as the mesh is refined, the accuracy of the 
solution, as well as its cost, goes up. However, whenever 
refinement is located in areas where the solution has high 
error, the increase in accuracy is relatively high than the 
increase in cost. In adaptive mesh generation, error 
estimates are used to refine the mesh where the error is 
higher than an acceptable value and to make coarse mesh 
where the error is lower than an acceptable value. 
Adaptive meshing is one of the key research topics being 
investigated to produce more robust and user-friendly 
finite element analysis environments in many disciplines. 
The adaptive method is applied to the RF cavity or wave-
guide in accelerators [1]. Here, the similar method is 
applied to the calculation of the impedance of triangular 
grooved chamber, which is used to suppress the secondary 
electron emission in a dipole magnet [2]. After giving a 
brief summary of the FEM (Finite Element Method), we 
derive a rigorous posteriori bound on the error estimation 
and adaptive refinement. Examples are also given of the 
use of adaptive refinement. 

ADAPTIVE STRATEGY 

The adaptive refinement procedure is based on the use 
of two key quantities, evaluated on the basis of a tentative 
solution: the refinement indictor and the convergence 
parameter. In addition, an estimate of the error of the 
solution is evaluated. 

The usual continuity assumption used in the field based 
finite element formulations results in a continuous field 
from element to element, but a discontinuous field 
gradient. Therefore, the reasonable error norm of the field 
for each element can be defined as follows 
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where φ is the exact field, φ̂ is the finite element solution. 

The actual err norm is calculated from the smoothed 
values of the element nodal gradient by the recovery 
process instead of the exact field. In this smoothing 
process, it is assumed that the approximation quantities 
are interpolated by the same basis function φ and that they 
fit the original ones in a least square sense. This method is 
better than the averaging of the element nodal gradient 
which is used by ANAYSIS[3].  

A more practical representation of the error norm in 
term of a percentage error is 
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 The maximum permissible error for each element can 

be calculated from the average of 2

e
q over all the 

elements 
2

av
q , 

22

ave
qe ε≤ , here, ε is the specified 

maximum value. The 
e

e values can be used for adaptive 

mesh refinement. It has been shown by Babuka and 
Rheinboldt [4] that if 

e
e is equal for all elements, then 

the model using the given number of elements is the most 
efficient one. This concept is also referred to as "error 
equilibration". 

We define refinement indictor
eee ee /=ξ , if ξe>1, 

the size of element e must be reduced and the mesh will 
require refinement, otherwise, the size of element must be 
increased and the mesh will be coarsened. Thus the 
predicted size of the new element based on an element-
element h-refinement technique can be calculated from 

the current element size as P
eee hh /1/ξ= , where eh is the 

predicted element size, he is the current element size and 
P is the order of the shape functions.  

The estimate of the error of the solution can be 
evaluated as  
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The summation in above formula is carried on the all 
elements.  

   APPLICATIONS 
Figure 1 shows the geometry of the triangular grooved 

surface. The period of the surface is W. A triangular 
surface with sharp tip is desirable to reduce the secondary 
emission [5]. During fabrication, the tip of the triangle is 
likely to be rounded. Therefore, the grooved surface with 
rounded tip is considered in this paper.  

The energy loss induced by the electromagnetic field 
inside the wall in the small skin depth approximation is 
proportional to the square of the magnetic field on the 
metal surface. Therefore, the enhancement η of the 
resistive wall wake effect (both transverse and 
longitudinal) for the finned beam pipe, compared to a 
normal beam pipe, can be written as [5] 

WH

dsH
2
0

2∫=η                                      (4) 

where H is the magnetic field of the beam on the surface 
of the metal, H0 the magnetic field in the case of a flat 
(non-grooved) surface, and integration follows the 
grooved surface over one period in a plane of constant z 
(beam direction). The magnetic field can be represented 
as φ∇×= ẑH , with ẑ  the unit vector in z and the 

magnetic potential φ satisfying the two-dimensional 
Laplace equation 02 =∇ φ . Note that using the Laplace 

equation for the magnetic field is valid for frequencies ω 
such that Wc >>ω/ ; for example, for W∼3mm this 
means ω ≤ 2π⋅1011 Hz. 

In the calculation of the field, the initial mesh size and 
the desired error ε are used to control the whole 
calculation procedure. The program automatically finds 
the best mesh distribution with a minimum number of 
mesh nodes to get the desired accuracy. When the 
accuracy is reached, the calculation stops. Figure 2 shows 
the example of the adaptive mesh. There is a high mesh 
density near the rounded tips due to the larger error there. 
Figure 3 shows the magnetic field lines near the grooved 
surface. The field lines can’t deeply penetrate inside the 
grooved surface.  There is strong field near the tip as 
shown in Figure 4. The magnetic field is normalized by 
the field of the flat surface. The field near the tip is 
enhanced by a factor of 7, which is the main source of the 
impedance. The field doesn’t change much with angle α 
as shown in Figure 4. Figure 5 shows the impedance 
enhancement factor for various sizes and shapes of the 
grooved surface. The impedance roughly linearly 
increases with the angle α and there is a smaller 
impedance for a larger scale of the surface. The peak 

impedance enhancement factor in the region we are 
interested in is 1.6.  

Figure 6 compares the calculated impedance with 
uniform mesh and adaptive method. The uniform mesh 
method uses 300k mesh nodes and the calculated error ε is 
10-3; On the other hand, the adaptive method uses only 
20k nodes and the error ε is 10-5. The calculated 
impedance with adaptive method is larger because of its 
higher accuracy, which is one of the characters of the 
finite element method.  

Figure 7 shows the sketch of a test chamber in dipole 
magnet. The width of the multipacting region where the 
grooved surface would be required is only 10 mm and the 
required grooved surface is only 15% of the total surface 
[2]. Therefore, the overall impedance enhancement due to 
the grooved surface is small.  
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Figure 1: Triangular grooved surface: triangular surface  
with sharp tips (top) and triangular surface with rounded 
tips (bottom). 

 
Figure 2: Adaptive mesh of the grooved surface. 

Sharp tip 

(a) 

 

Rounded Tip 

(b) 

 
Figure 3: Magnetic field lines penetrating in a groove. A 
half period of a groove with sharp tip is shown in (a) and 
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a period of a groove with rounded tip is shown in (b). The 
blue line shows the metal surface. The red lines are the 
boundaries in the calculation.  

 
Figure 4: Magnetic fields on the grooved surface with 
rounded tip. A period of a groove is shown. The geometry 
of the surface is shown in Figure 2. The field is 
normalized by the field with flat surface. The peak field 
locates at the surface near the tip.  
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Figure 5: Impedance enhancement factor of the 
triangular grooved surface with round tips. 
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Figure 6: Comparison of the impedance calculated using 
different methods.  The traditional method uses uniform 

mesh with about 300k mesh nodes; the adaptive method 
uses 20k mesh nodes.   

 
Figure 7: Sketch of the beam pipe with grooved surface in 
a dipole magnet. 

 
SUMMARY 

 
The adaptive refinement method is successfully applied 

to the electromagnetic field analysis. The refinement 
greatly helps the improvement of the accuracy and CPU 
time. The impedance enhancement due to the grooved 
surface is less than 10%. 
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