
VALIDATION OF PEP-II RESONANTLY EXCITED TURN-BY-TURN

Yiton T. Yan,† Yunhai Cai, William Colocho, and Franz-Josef Decker
SLAC, Stanford, CA 94309 USA

Abstract

For optics measurement and modeling of the PEP-II
electron (HER) and position (LER) storage rings, we have
been doing well with MIA [1] which requires analyzing
turn-by-turn Beam Position Monitor (BPM) data that are
resonantly excited at the horizontal, vertical, and longitudi-
nal tunes. However, in anticipation that certain BPM but-
tons and even pins in the PEP-II IR region would be miss-
ing for the run starting in January 2007, we had been devel-
oping a data validation process to reduce the effect due to
the reduced BPM data accuracy on PEP-II optics measure-
ment and modeling. Besides the routine process for rank-
ing BPM noise level through data correlation among BPMs
with a singular-value decomposition (SVD), we could also
check BPM data symplecticity by comparing the invariant
ratios. Results from PEP-II measurement will be presented.

INTRODUCTION

It is very helpful to have an accurate lattice model in fig-
uring out the best strategy for accelerator optics improve-
ment. Although the ideal lattice may serve such a purpose
to some extent, in most cases, real accelerator optics im-
provement requires accurate measurement of optics param-
eters. Therefore, it is very desirable to have precision mea-
surements of a complete set of linear orbits from which one
can form a linear optics model to match the linear optics of
the real machine.

At SLAC, we have a set of MIA programs [1] that have
been used for years to obtain the accurate lattice mod-
els, the so-called virtual machines, for both PEP-II High-
Energy Ring (HER) and Low-Energy Ring (LER). We
consider all quadrupole strengths (both normal and skew)
and sextupole feed-downs as well as all BPM gains and
BPM cross-plane couplings as variables to fit the Local
Green’s functions [2], the phase advances and the dis-
persions calculated from a lattice model to those derived
from orbit measurement using a model-independent anal-
ysis (MIA) [3]. We use an SVD-enhanced Least Square
fitting technique [4] that is efficient enough for a system
of tens of thousand constraints with thousands of vari-
ables. Once the lattice model is fitted to the orbit mea-
surement, we then confirm if it matches the real acceler-
ator in linear optics by checking the coupling Eigen el-
lipses [5] and/or dimensionless c12 [6] between those cal-
culated from the fitted model and those derived from the
orbit measurement to see if they are automatically matched
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at the double-view BPM locations before we call this fit-
ted lattice model the computer virtual accelerator. Once
the virtual accelerator is obtained, we may compare it to
the ideal lattice model for finding and adjusting special
magnets with noticeable differences, although we would
most likely search for an easily-approachable better-optics
model by pre-selecting and fitting a group of limited num-
ber of quadrupole strengths and/or sextupole bumps. The
solution is then applied to the real accelerator. This pro-
cedure has been successfully applied for numerous PEP-II
optics improvements such as fixing the beta beat, bringing
LER working tune to near half integer, reducing the linear
coupling and dispersion, etc.

To improve the PEP-II luminosity, besides improving
the optics, one can also increase currents of both LER
and HER. In the 2006 PEP-II run we were able to push
the currents to near 3 amperes for the LER and near 2
amperes for the HER and observe a peak luminosity of
1.2e34cm−2s−1. However, we noticed heating problems,
particularly at certain BPM locations. So we decided to
take out certain BPM buttons. This weakened the BPM
signals; consequently, we had to check the BPM data more
carefully to assure that we could still obtain useful virtual
machines from MIA.

MIA BPM DATA AND INVARIANTS

The linear geometric optics is determined if one has 4
independent linear orbits. This can be clearly shown by the
linear mapping, Z b = RabZa, and so Rab = ZbZa−1,
where the 4-by-4 matrix, Z a = [�za

1 , �za
2 , �za

3 , �za
4 ], represents

4 independent linear orbits at location a, and Rab is the
linear map from location a to location b. Therefore, a com-
plete geometric-optics set of data must be able to provide
the extraction of 4 independent orbits. Since there is ra-
diation damping in the rings, the most economic process
for such data acquisition is through two orthogonal reso-
nance excitations, one at the horizontal (Eigen-plane 1) and
the other at the vertical (Eigen-plane 2) betatron tunes, and
then take and store buffered BPM data. Since a betatron
motion has two degrees of freedom (phase and amplitude),
each excitation generates a pair of conjugate (cosine- and
sine-like) betatron motion orbits from zoomed FFT after
removal of non-physical BPM data. Therefore, a complete
4 independent linear (X and Y) orbits can be extracted from
the two Eigen-mode excitations.

Since we extract these MIA data at the equilibrium states
of the resonance excitation, we expect that the extracted
betatron motion orbit will comply with the symplecticity
requirement. That is, Rab is a symplectic matrix. Applying
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RabT
SRab = S, where

S =

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ ,

it follows that the anti-symmetric matrix Q = Z bT
SZb =

ZaT SZa is a constant around the ring. Since a similarity
transformation preserves the invariants and the 4 orbits are
extracted from two pairs of conjugate Eigen orbits, there
are only 2 invariants, Q12 and Q34 in the constant matrix Q.
Each represents how strong the betatron orbit is resonantly
excited. Labeling the 4 orbits as (x1, y1), (x2, y2), (x3, y3),
(x4, y4), the ratio of the two invariants can be derived and
is given by

Q12/Q34 = −(x1y2 − x2y1)/(x3y4 − x4y3), (1)

which is still an invariant under the linear BPM gain and
linear BPM cross coupling transformation given by

xm = gxx + θxyy,

ym = gyy + θyxx,

That is, we can measure the invariant ratio in the BPM mea-
surement frame. Without the need to know the linear BPM
gains and the linear BPM cross couplings, all we need to do
is to replace the orbits in Equation 1 with the measurement
orbit derived directly from BPM readings, i.e.,

Q12/Q34 = −(xm
1 ym

2 − xm
2 ym

1 )/(xm
3 ym

4 − xm
4 ym

3 ).
(2)

This is one quantity, which can be measured at each
double-view BPM. Therefore, it can be used for checking
the BPM data symplecticity, which along with other infor-
mation, such as BPM noise ranking, can be used for better
judgement of valid BPM data.
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Figure 1: Invariant ratio, Q12/Q34, calculated from the
Four independent orbits extracted from PEP-II LER BPM
buffer data taken on April 22, 2007. The blue horizontal
lines show the 3 standard deviations.

APPLICATION TO PEP-II BPM DATA
VALIDATION

Once the 4 independent orbits, (x1, y1), (x2, y2),
(x3, y3), (x4, y4) are extracted from the 2 set of resonantly
excited BPM buffer data, we first calculate the invariant ra-
tios, Q12/Q34 at all BPM locations. Ideally these ratios
should be the same at all BPM locations. However, if at
a certain BPM location, the machine is not globally cou-
pled, both the nominator and the denominator in Equation
2 can approach 0, causing unreliable invariant ratio calcu-
lation for that location. Therefore the invariant ratio is de-
termined by taking the average of those ratios that are well
selected through an iterative exclusion process. Once the
invariant ratio is determined, we then calculate the stan-
dard deviation to select those BPMs with invariant ratio,
Q12/Q34, within 3 standard deviations. Shown in Figure 1
is a typical case of the invariant ratio, Q12/Q34, for PEP-
II LER MIA data. The plot shows that the majority of the
BPM data have an invariant ratio, Q12/Q34, whin 3 stan-
dard deviations. They are immediately recognized as good
BPM data unless other types of checks show otherwise. For
those BPMs with Q12/Q34 outside the 3 standard devia-
tion, We have to check further before we can determine
whether they are good because of the possible singularity
problem as given by Equation 2. For example, if a BPM has
an invariant ratio outside the 3 standard deviation range and
is identified as a noisy BPM through a correlation check by
an SVD process, then we may have to take out that BPM in
MIA SVD-enhanced least square fitting.

Shown in Figure 2 is a typical case for PEP-II HER
MIA data invariant ratios. That the invariant ratio is about
1 means the two resonance excitations are balanced so
that the two invariants, Q12 and Q34, are about the same.
Again, ratios within 3 standard deviation are considered to
be good BPM data while those not within 3 standard devia-
tions requires other checks before one can be sure that they
are bad BPM data and thus need to be excluded from MIA
enhanced Least-Square fitting.
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Figure 2: Invariant ratio, Q12/Q34, calculated from the
Four independent orbits extracted from PEP-II HER BPM
buffer data taken on April 27, 2007. The blue horizontal
lines show the 3 standard deviations.
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Figure 3: total count of the times for each BPM with in-
variant ratios, Q12/Q34,  falling within 3 standard devia-
tion. The top plot shows the total count for the 14 sets of
MIA LER data taken in 2007 while the bottom plot shows
the total count for the 16 sets of the MIA HER data taken
in 2007.

PEP-II BPM DATA QUALITY SURVEY
FOR 2007 RUN

In order to determine the quality of each BPM and to
identify bad BPMs, we surveyed the quality of all the BPM
data for all MIA data taken during the 2007 PEP-II run.
We surveyed 14 sets of MIA data from the LER and 16 sets
of MIA data from the HER. For each BPM, if its invariant
ratio was within 3 standard deviations for a given set of
MIA data, we gave it one count as a good BPM. As shown
in Figure 3, the majority of the BPMs are considered as
very good BPMs as they pass the invariant ratio test for near
the maximum count (14 for LER and 16 for HER) possible.
For example, more than 80% of the LER BPMs have more
than 9 out of 14 count while more than 80% of the HER
BPMs have more than 10 out of 16 count. Those BPMs
with low count would receive our attention in determining
if the data should be excluded from MIA fitting each time
we have the MIA data. Testing with other criteria such
as noise ranking would be required to validate those BPM
data.

On the other hand, Figure 4 shows the count for each
BPM that does not pass the invariant ratio test and simul-
taneously has a high rank of noise level from correlation
analysis with SVD for the same sets of MIA data. This
gives us a clear picture as to which BPMs are most likely
trouble BPMs and we need to pay special attention to these
BPMs for MIA data exclusion decisions.

SUMMARY

Although MIA has been developed to a mature practical
stage for PEP-II LER and HER measurement and model-
ing, it will not work well without good turn-by-turn BPM
data. That MIA could work well in the past shows that
PEP-II had a very good BPM system that can take accu-
rate beam orbit data. In the 2007 PEP-II run, we have seen
MIA data quality degraded in LER due to missing BPM
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Figure 4: total count of the times for each BPM that does
not pass the invariant ratio test  and simultaneously have a
high rank of noisy level for 14 sets of LER MIA data and
16 sets of HER MIA data. These BPMs are likely to be the
trouble BPMs.

buttons and even broken pins. However, the data are still
useful, but we have to be more careful in excluding the bad
BPM data using various data quality test criteria. The most
convenient one is the invariant ratio, Q12/Q34, as shown in
this paper. Its best advantage is that it does not depend on
linear BPM gains and linear BPM cross couplings which
cannot be precisely known before MIA fitting. This invari-
ant ratio test works very well for a BPM at a location with
strong linear coupling. However, it cannot exclude the sin-
gularity problem once a BPM is at a location with no global
coupling. Thus, this test can only assure us the good BPM
data, leaving those not passing this test as doubtful BPM
data which need further testing with other criteria such as
noise ranking through SVD analysis.
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