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Abstract

The self-consistent Vlasov-Maxwell equations and a
generalized δf particle simulation algorithm are applied to
high-intensity finite-length charge bunches. The nonlinear
δf method exhibits minimal noise and accuracy problems
in comparison with standard particle-in-cell simulations.
For bunched beams with anisotropic energy, there exists
no exact kinetic equilibrium because the particle dynamics
do not conserve transverse energy and longitudinal energy
separately. A reference state in approximate dynamic equi-
librium has been constructed theoretically. The electro-
static Harris instability driven by strong energy anisotropy
relative to the reference state have been simulated using
the generalized δf algorithm for bunched beams. The
observed growth rates are larger than those obtained for
infinitely-long coasting beams. The growth rate decreases
for increasing bunch length to a value similar to the case
of a long coasting beam. For long bunches, the instabil-
ity is axially localized symmetrically relative to the beam
center, and the characteristic wavelength in the longitudi-
nal direction is comparable to the transverse dimension of
the beam.

INTRODUCTION AND THEORETICAL
MODEL

Collective effects with strong coupling between the lon-
gitudinal and transverse dynamics are of fundamental im-
portance for the applications of high-intensity bunched
beams [1]. The self-consistent theoretical framework for
studying collective effects is provided by the nonlinear
Vlasov-Maxwell equations [2]. A corresponding numerical
method, the δf particle simulation method, has been devel-
oped [3] to solve the nonlinear Vlasov-Maxwell equations
with significantly reduced noise. This theoretical and nu-
merical framework has been successfully applied to study
stable beam propagation [4], electron-ion two-stream (elec-
tron cloud) instabilities [5–8], and collective instabilities
driven by large energy anisotropy [9] for coasting beams.
In this paper, we report recent progress in developing a
generalized nonlinear δf simulation method to study col-
lective effects for finite-length charge bunches with nonlin-
ear space-charge fields in both the longitudinal and trans-
verse directions. For high-intensity bunched beams, the
equilibrium and collective excitation properties are quali-
tatively different from those for coasting beams. As a con-
sequence of the coupling between the transverse and lon-
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gitudinal dynamics, the transverse energy and longitudinal
energy are not conserved separately, and there exists no ex-
act kinetic equilibrium (∂/∂t = 0) which has anisotropic
energy in the transverse and longitudinal directions. On
the other hand, for charged particle beams accelerated to
high energy, energy anisotropy in the beam frame devel-
ops naturally as a result of phase space volume conserva-
tion. We have developed a reference state for beams with
anisotropic energy, which is not an exact, but an approx-
imate equilibrium solution of the Vlasov-Maxwell equa-
tions. The difference between the exact solution and the
reference state is simulated by the generalized δf particle
simulation algorithm described in this paper. Numerical
simulations of the electrostatic Harris instability driven by
large energy anisotropy are carried out. The effects of finite
bunch length are investigated, and the results are compared
with previous simulation results for infinitely-long coasting
beams.

We consider a single-species, bunched beam confined
in both the r− and z− directions by an external smooth-
focusing force in the beam frame

Ffoc = −mω2
⊥x⊥ − mω2

zzez . (1)

Here, ω⊥ and ωz are the constant transverse and longitu-
dinal applied focusing frequencies in the smooth-focusing
approximation. In the beam frame, the dynamics of
the bunched beam is described by the nonlinear Vlasov-
Maxwell equations [2]

{
∂
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+ v · ∂
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(
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∇2Az = −4π

c
e

∫
d3pvzf(x,p, t), (4)

where f is particle distribution function in phase space.
According the the δf method, the total distribution func-

tion is divided into two parts, f = f0 + δf , where f0 is
a known reference distribution function, and the numerical
simulation is carried out to determine the detailed nonlinear
evolution of the perturbed distribution function δf . This is
accomplished by advancing the weight function defined by
w ≡ δf/f . The dynamical equation for w is given by

dw
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= −(1 − w)
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Here, δφ ≡ φ−φ0, and δAz ≡ Az−Az0. For the perturbed
fields, Maxwell’s equations are given by

∇2δφ = −4πe

∫
d3p wf(x,p, t) , (9)

∇2δAz = −4π

c
e

∫
d3p vzwf(x,p, t) , (10)

where the reference potentials (φ0, Az0) satisfy

∇2φ0 = −4πe

∫
d3pf0(x,p, t), (11)

∇2Az0 = −4π

c
e

∫
d3pvzf0(x,p, t). (12)

It is desirable to pick (φ0, Az0, f0) as self-consistent so-
lutions to the Vlasov-Maxwell equations (2)-(4), such that
the (df0/dt)0 term in Eq. (5) vanishes. Even though it is
a perturbative approach, the δf method is fully nonlinear
and simulates completely the original nonlinear Vlasov-
Maxwell equations. Compared with conventional particle-
in-cell simulations, the noise level in δf simulations is sig-
nificantly reduced. The δf method reduces the noise level
of the simulations because the statistical noise for the to-
tal distribution function in the conventional particle-in-cell
(PIC) method, is only associated with the perturbed distri-
bution function in the δf method. For most applications,
(φ0, Az0, f0) are chosen to correspond to an equilibrium
solution with ∂/∂t = 0. For bunched beams, if the en-
ergy is isotropic in the beam frame, the reference state can
be chosen to be an exact equilibrium solution. Detailed
study of the collective excitations in bunched beams with
isotropic energy can be found in Ref. [10]. However, for
bunched beams with energy anisotropy, exact equilibrium
solutions do not exist due to the lack of independent lon-
gitudinal and transverse invariants of the particle dynam-
ics, and we can only choose a reference distribution f0 that
is close to a quasi-equilibrium state. Furthermore, for a
single-species beam, we neglect Az in the beam frame be-
cause |Az| � |φ| .

COLLECTIVE EXCITATIONS FOR
BUNCHED BEAMS WITH ENERGY

ANISOTROPY

Approximate kinetic equilibria with anisotropic energy
can be constructed for long bunches, or other cases where
the coupling induced by the nonlinear space-charge field is

relatively weak. For these cases, the transverse energy H⊥
and longitudinal energy Hz defined by [10]

H⊥ =
p2
⊥

2m
+

m

2
ω2
⊥r2 + eφ̃0(r, z), (13)

Hz =
p2

z

2m
+

m

2
ω2

zz2 + e 〈φ0〉 (z) , (14)

are approximately conserved. Here, 〈φ0〉 , φ̃0, and φ0 are
defined by

〈φ0〉 (z) = φ0(z) − φ0(0) , (15)

φ̃0 (r, z) = φ0(r, z) − 〈φ0〉 (z) , (16)

φ0(z) =

∫ rw

0 rφ0(r, z)dr

r2
w/2

. (17)

For present purposes, we choose the reference distribution
function f0 in the beam frame to be the anisotropic thermal
equilibrium distribution

f0 =
n̂

(2πmT⊥) (2πmTz)
1/2

exp
(
−H⊥

T⊥
− Hz

Tz

)
.

(18)
Here, T⊥ and Tz are the constant transverse and longitudi-
nal temperatures, respectively. The reference density pro-
file n0(r, z) and reference potential φ0(r, z) are determined
self-consistently from Eq. (11).

There are two terms that determine the dynamics of w in
Eq. (5). The (df0/dt)δ term is explicitly related to the per-
turbed fields, and the second term (df0/dt)0 is related to the
fact that the reference state f0 is not an exact equilibrium
solution of the Vlasov-Maxwell equations. To carry out the
δf particle simulations, we need to calculate the (df0/dt)0
term first. Some straightforward algebra gives [10]

1
f0

(
df0

dt

)
0

= − Ḣ⊥
T⊥

− Ḣz

Tz
= Ḣz

(
1

T⊥
− 1

Tz

)
, (19)

Ḣz = evz
∂φ̃0 (r, z)

∂z
, (20)

where super-dot (̇) denotes (d/dt)0 . For a well-chosen
reference state (f0, φ0), the dynamics associated with
(df0/dt)0 has a longer time-scale for variation than that
of (df0/dt)δ. Numerical study of the dynamics associated
with (df0/dt)0 can be found in Ref. [10].

We present here initial simulation results for the elec-
trostatic Harris instability driven by large temperature
anisotropy in a finite-length charge bunch. The large
temperature anisotropy characteristic of charged particle
beams in particle accelerators has long been thought to be a
possible free energy source to drive collective instabilities.
Recently, a systematic study has been carried out for this
instability in long coasting beams [9], showing that both
sufficiently large temperature anisotropy (small Tz/T⊥)
and sufficiently large beam intensity (sb) are required for
instability. The essential physics of this instability is the
coupling between the transverse and longitudinal particle
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tω⊥

Figure 1: Time history of an unstable perturbation at
one spatial location for a high-intensity anisotropic charge
bunch with sb = 0.8, Tz/T⊥ = 1/36, zb/rb = 15.

/
γ
ω ⊥

Figure 2: Growth rate γ as a function of bunch aspect ratio
zb/rb for high-intensity anisotropic charge bunchs.

dynamics. For long coasting beams, the coupling is pro-
vided by the wave excitation generated by the instability.
For bunched beams, the reference state for a finite-length
charge bunch provides an extra channel for the coupling to
take place. Indeed, we expect to see additional features of
the instability due to the finite bunch length.
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Figure 3: Unstable perturbed potentials δφ as functions of
z for different bunch aspect ratios zb/rb.

Shown in Fig. 1 is the time history of an unsta-
ble, azimuthally-symmetric perturbation relative to the
reference state (f0, φ0) at one spatial location for a
high-intensity anisotropic charge bunch with s b ≡
4πn̂e2/2mω2

⊥ = 0.8, Tz/T⊥ = 1/36, and zb/rb = 15,
where zb and rb are the RMS half bunch length and ra-
dius of the bunch. The instability growth rate is measured
to be Im ω = γ = 0.25ω⊥, and the real frequency is
ωr = Reω ≈ ω⊥. Simulations were performed for dif-
ferent bunch lengths corresponding to z b/rb = 10, 15, 20,
30, and 40 to investigate the effects of finite bunch length
on the instability.

The growth rate γ as a function of bunch aspect ratio is
plotted in Fig. 2. The measured growth rates are somewhat
larger than those in long coasting beams [9], which can be
attributed to the stronger coupling between the longitudi-
nal and transverse dynamics produced by the finite bunch
length. The longitudinal structure of the instability shown
in Fig. 3 demonstrates interesting variations as well [10].
For zb/rb = 10, the unstable structure maximizes at the
beam center [Fig. 3(a)]. For larger bunch aspect-ratios, the
unstable structure localizes symmetrically in the vicinity
of z/zmax = ±0.5 [Fig. 3(d)]. The localization is more
prominent for larger bunch length. As z b/rb → ∞, the
unstable structure becomes highly localized such that the
beam intensity is approximately uniform across the unsta-
ble structure in the longitudinal direction, and the coupling
due to the non-uniformity of the equilibrium in the lon-
gitudinal direction is significantly reduced. This explains
why the growth rate decreases for increasing bunch length.
In addition to the growth rate, the characteristic wavenum-
ber at maximum growth in Fig. 3(d) is kzrb ∼ 5.2, which
agrees well with the results obtained from the study for
long coasting beams [9].
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