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Abstract

A multipurpose coherent instability simulation code has
been written, documented, and released for use. TRANFT
(tran-eff-tee) uses fast Fourier transforms to model trans-
verse wakefields, transverse detuning wakes and longitu-
dinal wakefields in a computationally efficient way. Dual
harmonic RF allows for the study of enhanced synchrotron
frequency spread. When coupled with chromaticity, the
theoretically challenging but highly practical post head-tail
regime is open to study. Detuning wakes allow for trans-
verse space charge forces in low energy hadron beams, and
a switch allowing for radiation damping makes the code
useful for electrons.

INTRODUCTION AND THEORY

Coherent instabilities are of significant concern for a
wide variety of planned and existing accelerators. The the-
ory of these phenomena has been advancing steadily for
decades [1, 2, 3, 7, 9, 8, 4, 5, 10, 11, 12, 13, 6, 14] and,
quite recently, a crucial piece of the puzzle for transverse
instabilities was found [15]. A theoretical treatment involv-
ing all the relevant pieces appears very difficult whereas
simulation using particle tracking is conceptually straight-
forward [16].

The algorithm involves single particle evolution and
multi-particle kicks. First consider the single particle mo-
tion. The single particle longitudinal update for one turn is
given by

ε̄ = ε+
q

mc2
[V (τ) − Vs] + δε− T0ε/Tr (1)

τ̄ = τ +
T0η

β2γ0
ε̄ (2)

where τ is the arrival time of the particle with respect to
the synchronous phase, ε = γ − γ0 is proportional to the
energy deviation, γ0 is the reference Lorentz factor for a
particle of mass m and charge q, V (τ) is the RF voltage,
Vs is the synchronous voltage due to both acceleration and
radiation, β = v/c, T0 is the revolution period, η is the
frequency slip factor, δε is a quantum excitation random
kick, Tr is the longitudinal radiation damping time, and the
updated variables are τ̄ and ε̄.

Only one transverse variable is considered and it will be
referred to as x. The single particle transverse update, with-
out radiation, for one turn is

x̄ = x cosψ + p sinψ (3)
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p̄ = −x sinψ + p cosψ (4)

ψ = ψ0 +
2πξ
β2γ0

ε (5)

where p is the transverse momentum variable, ψ0 is the
on-momentum phase advance, and ξ is the chromaticity.
Transverse radiation damping and quantum excitation are
also included,

x̄ =

(
1 − T0

Tx

)
x+ δx (6)

p̄ =

(
1 − T0

Tx

)
p+ δp, (7)

where Tx is the transverse radiation damping time, and δx
and δp are random variables. While equations (1) though
(7) are written for one turn, TRANFT allows the user to
choose the number of updates per turn.

The multiparticle forces are associated with three
Green’s functions that are referred to as wake potentials.
The longitudinal voltage is

Vs(t) = −
τb∫

−τb

Ws(τ)Ib(t− τ)dτ, (8)

where τb is the bunch length, Ws(τ) is the longitudinal
wake potential, and Ib(t) is the instantaneous beam cur-
rent. Note that Ib(t) is the linear superposition of the cur-
rent impulses from each of the individual macro-particles.
The transverse voltage is driven by two terms. The short
range term is

Vx(x, t) =

τb∫
−τb

[xWd(τ)Ib(t− τ) +Wx(τ)Dx(t− τ)] dτ,

(9)
whereWd(τ) will be called the detuning wake [17, 18, 19],
Wx(τ) is the usual transverse wake potential, andDx(t) is
the instantaneous dipole density. Note that Dx(t) is the
product of the instantaneous current and the instantaneous
value of x.

A second term in the transverse force is included to ac-
count for multi-bunch effects. Each particle in the bunch
receives the same transverse kick

Vx =Re

{
[X+iP ]

∞∑
k=1

Wx(kT0/M)ei(ψ0−2πs)k/M
}
,

(10)
Where X =

∫
Dx(t)dt and P =

∫
Dpdt are the total

dipole moments in x and p. It is assumed that there are
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M identical, equally space bunches interacting with cou-
pled bunch mode number s. In actual accelerators there
is usually a gap in the bunch train. For rigid modes the
growth rate for a symmetric fill is never smaller than the
growth rate for a partial fill[20]. For an uneven fill and
arbitrary modes, one can prove that the largest magnitude
tune shift for the symmetric fill is never smaller than the
largest magnitude tune shift in an uneven fill[21]. With the
typical error bars associated with accelerator impedances
the error incurred by using (10) is probably benign.

ALGORITHMS

All calculations, but wakefields, are done to machine
precision using straighforward implementations of the
equations already introduced. As an example of the wake-
field calculations consider the longitudinal voltage, equa-
tion (8). Taking the instantaneous current to be a series of
delta functions one obtains the first order approximation

Vs,1(t) = −
N∑

k=1

q̂Ws(t− τk), (11)

where there are N macroparticles of charge q̂. There are
two problems with using (11) as it stands [22]. Firstly,
since N is small compared to the actual number of parti-
cles within the bunch, there can be large statistical fluctu-
ations in the applied voltage. This is especially worrisome
since short range wake potentials tend to be very large. The
net effect is that one can have a significant, unphysical,
blow-up in the longitudinal emittance. The second prob-
lem, not fully unrelated to the first, is caused by the dis-
crete time steps between updates. A typical particle makes
a step 2πQsστ each turn, whereQs is the synchrotron tune
and στ the rms bunch length. When length scales less than
2πQsστ are important in the wake potential then it is possi-
ble for macro-particles to pass each other without interact-
ing via the short range wake. Both of these problems can be
alleviated by convolving (11) with a smoothing function of
characteristic scale Δτ >∼2πQsστ and, since convolution is
commutative and associative, we may consider a smoothed
wake potential Ŵs(τ). This leads to a second approxima-
tion for the voltage that is physically reasonable

Vs,2(t) = −
N∑

k=1

q̂Ŵs(t− τk). (12)

To update the particles equation (12) needs to be evaluated
for t = τ1, . . . τN and a naive algorithm requires O(N 2)
operations. Instead of incurring this computational penalty,
it was decided to use an approximate technique. First, a
uniform grid of points spaced by δt <∼ Δτ/5 is generated.
Next, the macroparticles are placed on the grid via linear
interpolation. A fast Fourier transform (FFT) is applied,
multiplied by the FFT of Ŵs, and an inverse FFT completes
the calculation of Vs,2. The total number of grid points is a
power of 2 and the total grid length is at least twice the to-
tal bunch length to eliminate “phantom” of “ghost” forces

[23]. There are two sources of error involved with this com-
putation. The first is due to the application of linear interpo-
lation in gridding the system and the second involves using
numerical integration (via FFT) to evaluate the sums. The
net effect is easily tested by cutting δt in half and rerunning
the simulation until the answer converges.

A SAMPLE CASE

Relevant parameters are given in Table 1. In addition to
the table, the machine impedance was due to resistive wall
and short range resonant impedances, both longitudinal and
transverse. The total time required to do the simulations
and make the plots was a couple of hours. Interested parties
are encouraged to email the author for the code and user
manual.
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Figure 1: Evolution of the total transverse action for a
marginally unstable beam.

Table 1: Parameters for the electron sample case
parameter value

h=1300 voltage 3.7 MV
h=3900 voltage 1.2 MV

rms bunch length 55 ps
particles/bunch 14 × 109 and 15 × 109

betatron tunes Qy = 16.3
Lorentz factor 5871
circumference 780 m

transition gamma 52.1
tranverse radiation damping 13 ms

time
longitudinal radiation damping 6.5 ms

time
chromaticity 5

rms transverse beam size 3 microns
rms spread in γ 5.4

coupled bunch mode number 17
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Figure 2: Transverse offset versus position along the bunch
for a marginally unstable beam .
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Figure 3: Evolution of the total transverse action for a
marginally stable beam.
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Figure 4: Transverse offset versus position along the bunch
for a marginally stable beam .

ACKNOWLEDGEMENTS

Thanks to Michael Borland, Yong-Chul Chae, Sam Krin-
sky, Ryutaro Nagaoka, Thomas Roser, Todd Satogata and
Gang Wang for useful discussions and encouragement.

 0

 2

 4

 6

 8

 10

 0  2000  4000  6000  8000  10000

 c
oh

er
en

t <
x2  +

 p
2 >

 (
ar

b)

time (turns)

14
15

Figure 5: Comparison of coherent amplitude for stable and
unstable beams.
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