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Abstract

In the present analysis we study the self consistent prop-
agation of nonlinear electromagnetic pulses in a one di-
mensional relativistic electron-ion plasma, from the per-
spective of nonlinear dynamics. We show how a series
of Hamiltonian bifurcations give rise to the electric fields
which are of relevance in the subject of particle accelera-
tion. Nonlinear coupling of plasma waves and electromag-
netic pulses triggers strong chaotic dynamics which may
detrap the plasma wave from the electromagnetic pulse,
leading to wave breaking. Connections with results of ear-
lier analysis are discussed.

INTRODUCTION

Recent SLAC plasma wakefield accelerator experi-
ments [1], operated in a metre-scale plasma, have demon-
strated the ultra-high gradients provided by this technol-
ogy. To maintain these gradients over longer and longer
plasmas, it is important to have a deeper understanding on
the processes of wakefield destruction (wave breaking).

Using the same model that Kozlov et al. [2] investi-
gated numerically the propagation of coupled electromag-
netic and electrostatic modes in cold relativistic electron-
ion plasmas and Mofiz & de Angelis [3] applied analytical
approximations, we shall construct a canonical representa-
tion to examine some key points like the way small am-
plitude localized solutions are destroyed and when isolated
pulses are actually free of smaller amplitude trails (this is
related with the existence of wakefields following the lead-
ing wave front which is of relevance for particle accelera-
tion). This will be done in association with techniques of
nonlinear dynamics [4], since we intend to establish con-
nection between the pulses of radiation and fixed points
of the corresponding nonlinear dynamical system (Licht-
enberg and Lieberman 1992).

THE MODEL

We follow previous works and model our system as con-
sisting of two cold relativistic fluids: one electronic, the
other ionic. Electromagnetic radiation propagates along the
z axis of our coordinate system and we represent the rele-
vant fields in dimensionless forms [5]. In addition, we sup-
pose stationary modulations of a circularly polarized car-
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rier wave for the vector potential in the form A(z,t) =
V(€)[&sin(kz — wt) + § cos(kz — wt)] with £ = z — Vi,
whereupon introducing the expression for the vector poten-
tial into the governing Maxwell’s equation one readily ob-
tains V' = 2k /w. Manipulation of the governing equations
finally takes us to the point where two coupled equations
must be integrated [2, 3]:
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where the primes denote derivatives with respect to { =
(we/c) & re(d ) = V(1L +¢)% — p(1+¥2), 7i(4, %)
VI = p6)2 —p(1+ p242), n = w2/?, p = me/mi,
Vo =V/c,andp = 1 — V2, with w? = 47mn.e? /m, as the
plasma frequency, and n. = n; as the equilibrium densi-
ties. We further rescale w/ck — w and w./ck — w, in Vj,
n and p, which helps to simplify the coming investigation:
n preserves its form, Vo — 1/w,andp — 1 —1/w?. Ano-
ticeable feature of the system (1) - (2) is that it can be writ-
ten as a Hamiltonian system of a quasi-particle with two-
degrees-of-freedom. Introducing the momenta P, = ¢’
and P, = —¢'/p, the equations for ¢ and ¢ takes the form

' =0H/OPy, P&, = —0H/0, 3)
¢ = 0H/OPy, P(; = —0H/0¢, 4)
where the Hamiltonian H reads
P2 P2 17 1
H=="-p=24—y>+ 1 |r(6,9) + —1:(6,9)| -
3 P g Uy el ) + (0, 0)

©)
As we are interested in the propagation of pulses vanishing
for [{| — oo, conditions Py = Py, = ¢ = ¢ = 0 must
pertain to the relevant dynamics, from which one concludes
that E = (Vo /p)? (1 + 1/u). Considering wave breaking
and instability criteria [5], the entire dynamics must evolve
within the physical region

VAT I%) 1< < 1 -

where we will define the limits as ¢, and ¢y,q. respec-
tively. Evaluating the linear frequencies of laser and wake-
field small fluctuations ¢ = QZ4, ¢" = —QZ 6, we have

p(L+p2¢?)]  (6)

O =-1/n+1/p(+p), Q=0+p)/Vg. )
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The potential ¢ oscillates with a real frequency 24 and, for
the vector potential, Qi > 0 (necessary condition for the
presence of instability to reach high-intensity fields from
noise level radiation) and, consequently from relation (7),

l<w? <1+w?(1+p), (8)

The threshold be = 0 can be rewritten in the form
w = ws = /14 w2(1+ u), where w, is the linear dis-
persion relation for electromagnetic waves. If one sits
very close to the threshold, amplitude modulations of ¢
are tremendously slow, while the oscillatory frequency of
¢ remains relatively high. This disparity provides the con-
ditions for a slow adiabatic dynamics where, given a slowly
varying v, ¢ always accommodates itself close to the min-
imum of

U(¢,0) = =Vo/p” [re(d,9) + " tri(g, )] . (9)

When ¢ = 0, U has a minimum at ¢ = 0 which is thus
a stable point in the adiabatic regime. As one moves away
from the threshold, faster modulations and higher ampli-
tudes may be expected to introduce considerable amounts
of nonintegrable behavior and chaos into the system. There
will be cyclic orbits while ¢ is such that the correspond-
ing potential is not above the level U(¢.,in). At Fig. 1
the potential AU = U(¢,0) — U(0,0) is represented for
Vo = 0.99 and 1+ = 0.0005, parameters characterizing
high-velocity pulses with U (¢maz ) > U(dmin). Orbits of
region I, ¢min < ¢ < &, will oscillate back and forth, but
orbits in region 11 eventually reach ¢,,;, where r. — 0.
Since it can be shown that the electronic density depends on
re in the form n, ~ r* [2, 3], break down of the theory
indicates wave breaking on electrons.

Also shown in the figure is the wave breaking energy
AU (pmin) = Ewbr Separating regions I and 171

1
\/(1 - Hd)mzn)Q —-P

Fupr = —= +
e p? Tz

(10)

The same figure suggests how nonintegrability affects
localization of our solutions: as one moves away from
adiabaticity and into chaotic regimes, trajectories initially
trapped by U may be expected to chaotically diffuse to-
wards upper levels of this effective potential, escaping from
the trapping region, approaching F ;- and eventually hit-
ting the boundary at ¢,,,.,, or, in general, attaining . = 0
for ¢p # 0. If this is so, we have an explanation on how
small amplitude solitons are destroyed, one of the issues of
interest in the subject [9].

NONLINEAR DYNAMICS

We introduce our Hamiltonian phase space in the form
of a Ponicaré surface of section mapping where the pair of
variables (¢, P,) is recorded each time the plane ¢ = 0 is
punctured with Py, < 0. The Newton-Raphson method was
used to locate periodic orbits and evaluate the correspond-
ing stability index o which satisfies |o| < (>)1 for stable
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Figure 1: Oscillating (I) and wave breaking (/1) regions
for the electric potential at ¢ = 0.

(unstable) trajectories [7]. To have a convenient setting of
parameters for fast electron acceleration by wakefields, we
shall keep V, close to the unit, and thus w slightly larger
than one (representing wave modes propagating nearly at
the speed of light). After V, is established, the electron
plasma frequency is calculated as w? = nw?, n satisfying
condition (8) again.

In all cases analyzed here we take ¢ = 0.0005 as
in [2] and V,, = 0.99 to represent the high speed con-
ditions of wakefield schemes. Since isolated pulses can-
not be seen in periodic plots we alter slightly the energy
EtoE = Vo/p?(1 +1/u) (1 +€), € < 1 so the van-
ishing tail Py, = Py = ¢ = ¢ = 0 is avoided. With
this we convert isolated pulses into trains of quasi-isolated
pulses. The instability threshold for the vector potential
is obtained in the form n. = p/(1 + ©) = 0.0198 so
we < w as it must be in the underdense plasmas. To
investigate the adiabatic regime of the relevant nonlinear
dynamics we examine phase portraits for  slightly larger
than 7.. In panel (a) of Fig. 2 we set n = 1.00001 ..
With such a relatively small departure from marginal sta-
bility, modulations are slow with [©2,4| > |Q,], adiabatic
approximations are thus fully operative and what we see
in phase space is just a set of concentric KAM surfaces
rendering the system nearly integrable. The central fixed
point corresponds to an isolated periodic orbit since it rep-
resent a phase locked solution that return periodically to
1 = 0, ¢ — 0, and the surrounding curves depict regimes
of quasiperiodic, non-vanishing fluctuations of ¢. Reso-
nant islands are already present but still do not affect the
central region of the phase plot where the solitary solution
resides. When n grows the behavior of the central fixed
point can be observed in terms of its stability index: ini-
tially it oscillates within the stable range marking the exis-
tence of a central elliptic point near the origin; then, when
it reaches o = +1, no central orbit is found. This indi-
cates a tangent bifurcation with a neighbouring orbit which
terminates the existence of the central point [8]. Immedi-
ately after tangency, the phase plot at ¢ = 0 is still con-
stricted to small values of ¢ as seen in Fig. 2(b) where
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Figure 2: (a) Phase plot near the modulational instability
threshold, with » = 1.000017,; (b) phase plot after the
inverse tangency , with = 1.00017,. e = 1011,

1 = 1.00017.. To show that larger values of n cause diffu-
sion towards upper levels of U (¢), we have investigated the
behaviour of the energy E 4 = pP§/2+AU corresponding
to the electrostatic field ¢, working with the compact vari-
ables ey = xe Ey/(Xe + Eg) and ® = x4 ¢/(xo +[4]),
where x. 4 represent the scale above which the correspond-
ing variables are compactified (both setted to 0.0001). For
n = 1.00021n, as in Fig. 3, the central fixed point no
longer exist. In addition to that, KAM surfaces no longer
isolate the central region of the phase plot and diffusion is
observed. The quasi-particle moves toward F ;- and even-
tually arrives at this critical energy producing wave break-
ing on electrons. At this point the simulation stops with
the electron density diverging to infinity. Diffusion is ini-
tially slow and becomes faster as energy increases. One
sees voids in the diffusion plots which correspond to res-
onant islands in the phase space, so as diffusion proceeds
the quasi-particle escalates along the contours of the res-
onances that become progressively larger as already men-
tioned - this is why the process is initially slow, becoming
faster in the final stages. For larger values of » no reso-
nance is present and the quasi-particle moves quickly to-
ward F,.. In case of Fig. 3 one can still see various
pulses before wave breaking, but when 7 is so large that
resonances are no longer present, wave breaking can be in-
stantaneous. We finally note the following relevant fact.
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Figure 3: Dynamics as represented in the e, versus @
space: = 1.000217x, €wpr = XeFwbr/(Xe + Ewbr)-

For V, — 1, it is known that the amplitude of the electro-
magnetic pulses are small [9]. But as one goes beyond the
adiabatic regime, our discussion on diffusion allows to con-
clude that even small initial pulses eventually reach very
high amplitude values for the plasma waves, which pro-
vides the condition for formation of strong electric fields
with the corresponding implications on particle accelera-
tion.

We read all these features as it follows. For small enough
7’s there are locked solutions representing isolated pulses
coexisting with surrounding quasiperiodic solutions where
¢ does not quite vanish when ¢ does. As 7 increases past
the mentioned tangent bifurcation but prior to full destruc-
tion of isolating KAM surfaces, one reaches a regime of
periodical returns to ¢ = 0, although in the presence of a
slightly chaotic ¢ motion. Those cases where ¢ = 0 but
¢ # 0, correspond to quasineutral ¢ pulses accompanied
by trails of ¢ activity as described in [10] and [11]. We
see that trails can be regular or chaotic. Finally, for large
enough n’s, KAM surfaces no longer arrest diffusion and
wave breaking does occur as r. — 0, as we have checked.
At this point adiabatic motion is lost and this is likely to
correspond to that point where small amplitude solitary so-
lutions are entirely destroyed as commented in [9] and [6].
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