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Abstract

Orbit Response Matrix(ORM) method has been widely
used for lattice modeling, and beam diagnostics, how-
ever the difficulty on convergence arises as the model be-
comes larger, more complicated or with nonlinear param-
eters brought in. A new code named YAOC(Yet Another
Orbit Code) was developed based on a robust numerical
method called scaled Levenberg-Marquardt algorithm, and
its applications on various lattices are discussed here.

INTRODUCTION

Orbit Response Matrix, because of its direct connection
to beam dynamics between two points in a storage ring, has
been used for lattice modeling, and beam diagnostics[6, 2].
But the difficulty on convergence arises as the model be-
comes larger, more complicated or has nonlinear parame-
ters such as quadrupole strength brought in. YAOC was
developed to improve convergence properties and to be
more robust. Based on Scaled Levenberg-Marquardt al-
gorithm, this code has resolved the coupling problems be-
tween parameters and gained excellent convergence in our
thousands of simulations[2]. The applications on Fermilab
Booster and Taiwan Photon Source design lattice is dis-
cussed in this paper. A recent experiment at VUV ring di-
agnosing the source of 60 Hz vertical orbit oscillation also
proved its accuracy.

ORBIT RESPONSE MATRIX

Closed orbit shift observed at s due to a small bump or a
perturbation at s0 is described by[3]

yco(s) =

√
β(s)β(s0)
2 sinπν

cos(πν − |φ(s) − φ(s0)|)θ(s0)

≡G(s, s0)θ(s0)
(1)

where β(·) and and φ(·) are the betatron amplitude func-
tions and phases at source and observation locations, ν is
betatron tune, G(s, s0) = dyco(s)/dθ(s0) is the Green
function connecting a small bump θ(s0) and an observed
closed orbit shift at yco(s). The closed orbit shift due to
distributed bumps is a sum of all these effects: yco(s) =∑n

i=0 G(s, si)θ(si) For a storage ring with m observation
point, i.e. m Beam Position Monitors(BPM), which can
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detect both horizontal and vertical displacement, the Green
functions can form a matrix called Orbit Response Matrix:(

x
z

)
2m

=
(
GXX GXZ

GZX GZZ

)
2m×2n

(
θx

θz

)
2n

(2)

where n is the number of orbit bumps or perturbations,
θx and θz are their horizontal and vertical bump strength,
x and z are detected horizontal and vertical closed or-
bit shift, and G{·}{·} are matrices of Green functions, i.e.
GXX

ij = dxi/dθx
j , GZZ

ij = dzi/dθz
j . The off-diagonal sub-

matrices, GZX
ij = dzi/dθx

j and GXZ
ij = dxi/dθz

j would be
zero, if no coupling presents between horizontal and verti-
cal planes[2].

MODELING AND OPTIMIZATION

ORM usually has thousands of numbers. e.g. NSLS
VUV ring with 24 BPMs and 16 orbit trim quads can have
1536 data points. Because of this large number of data, A
lattice with variable parameters can be modeled on it, and
the agreement between model and real running machine is
described by a merit-function χ2 based on ORM data from
measurement and lattice model:

χ2(p) ≡
N∑
i

fi(p)2

=
∑
ij

(
G{X,Z},meas

ij − G{X,Z},model
ij

σGij

)2

+
∑
x,z

(
νmeas

x,z − νmodel
x,z

σνx,z

)2

+
∑

k

(
φ
{X,Z},meas
k − φ

{X,Z},model
k

σφij

)2

(3)

where f is a vector composed of G
{·}{·}
ij , νx,y, φij and

other possible observable quantities. p is the variable
parameters vector, which determines the G

{·}{·},model
ij ,

νmodel
x,z and φ

{X,Z},model
k .

Although Newton’s method with Sigular Value decom-
position(SVD) can be used to minimize the figure-of-merit
function χ2[6], the convergence of fitting is very much lim-
ited within linear dependence of χ2 on orbit bump strength
θ, BPM tilt angle and gain. For a lattice model with nearly
10,000 ORM elements, and a few hundred variable param-
eters, the convergence indicator χ2/Nd, where Nd is de-
gree of freedom, is misleading due to a large denominator
Nd[2].
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Scaled Levenberg-Marquardt(L-M) algorithm[5] is an
effective and robust solution to nonlinear fitting problems
with hundreds of variable parameters. Different from bump
strength θ and BPM gain, the K1 does not linearly change
G(s, s0), therefore yco(s) in Eq. (1). With scaled L-M
algorithm, not only the linear parameters like orbit bump
strength θ, BPM gain factor, but also the nonlinear parame-
ters such as quadrupole strength K1 can be fitted correctly.
The scaling property of L-M algorithm also makes it robust
to avoid the betatron resonance.

The minimization of Eq. (3) has a general form as

min{‖f + Jp‖ : ‖Dp‖ ≤ Δ} (4)

where || · || is length of vector,J is any matrix of right di-
mension, p is the parameter vector, and D is scaling ma-
trix, Δ can be regarded as the size of hyper-ellipsoid within
which the solution is iteratively searched. Eq. (4) basically
means using scaling matrix D to searching for an optimum
p, which minimize χ2, and p is confined within a hyper-
ellipsoid defined by Δ. The iteration converges when ar-
rives at a small enough Δ.

Instead of solving a linear equation for δp during iter-
ation as in Newton’s method[6], Scaled L-M algorithm,
for example implemented in GSL[1], use a set of strate-
gies to update D and Δ to adaptively change p. This
back-and-forth searching can effectively jump over beta-
tron resonance[4,5].

APPLICATIONS

YAOC has been successfully applied on lattice simula-
tions and beam diagnosis of Fermilab Booster, NSRRC de-
sign lattice, and NSLS VUV ring.

The design lattice is first input into YAOC, and together
with a list of variable parameters, which can be BPM tilt
angle, horizontal and vertical gain, quadrupole tilt angle,
and strength K1. Following the strategies of scaled L-
M algorithm, YAOC will search for an optimum set of
these parameters making their ORM as close as possi-
ble to the measured ORM. The lattice function routines
are adapted from Elegant to speed up the first derivatives
∂χ2/∂pi and the second derivatives, i.e. the Jacobian Ma-
trix Jij = ∂2χ2/∂pi∂pj .

Fermilab Booster lattice was simulated extensively on
thousands of lattice cases with different random errors.
In each lattice case, a small error ΔK1 was added to
every combined function dipoles(also called quadrupoles
in my lattice modeling) which has a nominal K1 =
±0.05m−2, and new Orbit Response Matrix was gener-
ated as experiment data. YAOC was applied to fit for
these ΔK1, and Fig. 1 shows a typical result of our
fitting, where fitted ΔK1s are the same as those we
used to generate the input ORM data. A statistics of
YAOC’s performance is in Fig. 1(b), where the errors
of quadrupole strength have a uniform distribution with
ΔK1 ∈ [−10%K1, +10%K1]. It shows good agreement
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Figure 1: Simulation of Fermilab Booster quadrupole er-
rors

between fitted and actual quadrupole strength, and the dif-
ference are always less than 1 × 10−5m−2 which is only
0.02% of nominal K1 value. Over 3000 lattices are stud-
ied, with different distribution of random errors, and the
convergence is almost guaranteed in Fermilab Booster sim-
ulations when only quadrupole and BPM errors are consid-
ered.

BPM noise is also considered in simulations. In Fig. 2,
±10μm amplitude noise is added to the closed orbit shift,
The difference of quadrupole strength between YAOC out-
put and actual lattice is less than 1% of the nominal K1.

YAOC is also applied to Taiwan Photon Source design
lattice, which has 24 superperiods, 600 parameters includ-
ing quadrupoles and BPMs errors, and 112898 terms in
χ2. The distortion of betatron amplitude functions due to
quadrupole errors are shown in Fig. 3. Starting from design
lattice YACO successfully reproduced the betax,y almost
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Figure 2: A result with BPM noise 10μm
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same as the simulated measurement. The fitted and ”mea-
sured” βx are overlapped in Fig. 3. The design lattice can
be restored by comparing the quadrupole strength output of
YAOC with design values.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  10  20  30  40  50  60  70  80

be
ta

 y

s [m]

NSRRC Cell 1/6

Design βy
Error βy

Fit βy

Figure 3: Lattice Modeling of NSRRC.

A recent study at NSLS VUV also shows the ability of
YAOC in beam diagnosis. We have used YAOC to locate
the source of orbit vibration. The orbit vibration data is
dumped from BPM buffer, and a model with one virtual
bumper was built in YAOC. After comparing the single
column of ORM due to this virtual bumper and the BPM
buffer data, we find out the most possible location is at
BUISH(Booster UV ring Injection Septum) indicated by
the minimum χ2 in Fig.4.
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Figure 4: YAOC was used to find the source of vertical
orbit vibration. χ2 of orbit vibration indicates the source is
located near injection.

After turning off the BUISH power supply, the vertical
orbit perturbation disappeared. Fig. 5 compares the orbit
vibration with BUISH on and off at two BPMs. Due to
phase advance between source and observation point, the
vibration amplitude is different at each BPM. A proper
phase advance may make the sin term in Green function
be zero, therefore the orbit at that BPM is not affected by
perturbation at this particular source point. This is the case
for PUE17 shown in Fig. 5. After turning off BUISH, orbit
vibration at 24 BPMs are all below 10μm. It confirms that
the perturbation source of vertical orbit vibration is from

BUISH.
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Figure 5: Vertical Orbit Vibration with BUISH(Booster
UV ring Injection Septum) on/off(feedback is off for both
cases).

CONCLUSION

YAOC is an orbit optimization code based on scaled
Levenberg-Marquardt method. It provides better conver-
gence properties, and resolves parameter coupling prob-
lems. It is also immune from a reasonable level of BPM
noise. Applications of the new code has been successful
on Fermilab Booster, Taiwan Photon Source design lattice,
VUV ring.
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