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Abstract

Linear-field non-scaling FFAGs are proposed for multi-
GeV acceleration of muons and order hundreds MeV/u pro-
ton or carbon for medical applications. The large momen-
tum acceptance lattices employ alternating focusing and
defocusing combined-function magnets. In one implemen-
tation, rectangular quadrupole magnets are used, with the
dipole component generated by off-setting the magnet cen-
tre relative to the reference orbit. This feature, coupled with
the large radial aperture for momentum variation, gives
rise to large amplitude orbits. The angles are so large that
there is a partial interchange of the longitudinal and trans-
verse momentum relative to the fixed coordinate system of
the quadrupole. We examine methods to devise non-linear
transfer maps to high order. The map is constrained by the
fact that its first partial derivative produces the linear trans-
fer matrix which must have unity determinant.

INTRODUCTION

A rectangular combined function magnet is essentialy
a displaced quadrupole. If the magnet achieves a large
bending, then the displacements from the magnetic cen-
tre are large. Thus a correct treatment demands consid-
eration of large amplitude oscillations. Treatments of these
third-order aberrations are given in Refs.[1, 2]. Our devel-
opment differs in two respects: we pay close attention to
conservation of the unity determinant - which property is
not guaranteed in [1, 2] since these works are inspired by
single-pass through a spectrometer; we retain time as the
independent variable rather than distance along the orbit.

Initially, we had considered the WKBJ approximation as
a method for dealing with this problem. A quadrupole with
varying longitudinal velocity “looks” like a quadrupole
with varying focusing strength k, but there are problems.
the 1st-order WKBJ technique leads to a vaying deter-
minant; this is “fixed” in the 2nd-order WKBJ treatment
but leads to complicated matrix elements. Another prob-
lem is that elements contain trig’ functions with argument
k

∫ t

0
dt

√
1 + vz(t) where vz is the incremental longitudi-

nal velocity. If the square root is not expanded, then numer-
ical integration must be used; and the low order expansion
breaks down in the parameter regime in which the correc-
tions are important. Compared with that delicate situation,
the Green’s function[3] of the simple, linear quadrupole
provides an accurate and robust method of computing tra-
jectories.
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EQUATIONS OF MOTION AND THEIR
SOLUTION

We shall study bending in the horizontal plane, We
adopt a cartesian system of particle coordinates x =
[x(t), y(t), vst + z(t)] with x, y horizontal and vertical, re-
spectively, and z aligned with the symmetry axis of the
quadrupole. The particle charge, rest mass and speed are
e, m0 and vs. The quadrupole gradient and strength are
B1 Tesla/m k2 = (eB1)/(γvsm0). We introduce the
divergences(d/dt)[x, z] = vs(d/ds)[x, z] = vs[x′, z′],
where s = vst. The equations of motion are:

(dx′/ds) + k2x(1 + z′) = 0 (1)

(dy′/ds) − k2y(1 + z′) = 0 (2)

(dz′/ds) + k2(yy′ − xx′) = 0 . (3)

The initial conditions at s = 0 are

x0 = [x0, x
′
0, z0, z

′
0, y0, y

′
0] . (4)

The last equation (3) can be integrated immediately. In the
case y2 � x2, this becomes

z′(s) = z′0 + (k2/2)[x2(s) − x2
0] . (5)

For motion confined to the horizontal plane the divergences
satisfy

(1 + z′)2 + (x′)2 = 1 . (6)

1st & 2nd Approximation

The first step is to treat the terms in z ′ as negligible, lead-
ing to SHM with the well-known solution

[x(s), x′(s)] = T0[x0, x
′
0] with T0 =

[
C S
C′ S′

]

.

(7)
Here C(s), S(s) are the principal functions. There is an
analogous solution for y, y ′ which we shall continue to
omit for brevity. We restore the perturbation Wx :

(dx′/ds) + k2x = −k2x[z′0 +(k2/2)(x2−x2
0)] ≡ Wx(s)

(8)
We treat this as if it were an inhomogeneous equation and
solve by the method of Green’s functions. Substituting (7),
the perturbations are

Wx = −k2(Cxx0 + Sxx′
0)z

′(s) (9)

z′(s) = z′0 + (k2/2)[(Cxx0 + Sxx′
0)

2 − x2
0)] (10)

z(s) = z0 +
∫ s

0

z′(u)du . (11)
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The solution is:

x(s) = Cxx0 + Sxx′
0 +

∫ s

0

Gx(s, u)Wx(u)du (12)

x′(s) = C′
xx0 + S′

xx′
0 +

∫ s

0

G′
x(s, u)Wx(u)du (13)

Our working is not yet complete, in the next section we
show the need for introducing a third approximation. Ex-
plicit expressions for (x, x′) are given in Ref. [4].

Transfer matrix for small oscillations

The above exercise will find any number of trajectories;
and we may single out one of them as the reference tra-
jectory. Then we may ask what is the small amplitude
motion about the reference. The equations (10-13) con-
stitute a set of nonlinear mappings which take the old co-
ordinates into new coordinates at later times. Symbolically
x(s) = Tx(s,x0) and x′(s) = Tx′(s,x0) = (∂/∂s)Tx,
etc. For brevity we adopt x(s) = [x1, x2, x3, x4, x5, x6] =
[x, x′, z, z′, y, y′], so the mapping is written xi = Ti(s,x0)

If we treat the particular set of initial conditions x0 as
defining a reference trajectory, then the transport of small
deviations is given by the matrix of partial derivatives
Tij = ∂Ti(s,x0)/∂xj,0.

The underlying equations are conservative because only
magnetic fields are present; and so the determinant of the
transfer matrix, Det[Tij ], should be unity. In fact, our ex-
pressions for the elements Tij are only approximate, and
Det[Tij ] will deviate from unity.

Det[Tij ] = 1 + k4[x2
0s

2/2 + x0x
′
0s

3(2/3) + . . .] . (14)

The error would be appreciably reduced if the quadratic
and cubic error terms (s2, s3) could be eliminated.

3rd Approximation

In large part the error in the determinant arises because
the longitudinal motion [z, z ′] is a lower order approxima-
tion than the transverse [x, x′].

The third approximation is to substitute the perturbed
x, x′, equations (12,13), into z ′, expression (5). The re-
sulting expression for z ′ contains powers of x0, x

′
0 up to

six, which is an unncessarily high order. Consequently, we
eliminate all terms (x0)n and (x′

0)
n with n > 3, but re-

tain (x0)2(x′
0)

2. Explicit expressions for (z, z ′) are given
in Ref. [4]. The determinant is

Det[Tij ] = 1 + (1/12)k4s4(k2x2
0 + z′0)

2

+ (1/4)k6s5(k2x2
0 + z′0)x0x

′
0 + . . .(15)

The identity (6) implies that we may substitute −(x ′
0)

2/2
in place of z ′

0 (to 1st order). For example, if the total bend-
ing produced by the quadrupole is 2θ, the entry and exit
angles are each ±θ and the error (compared with unity)
is (ksθ)4/48. Now to achieve a bend angle 2θ requires
k2s2 ≈ 2θ, and so the error is (θ)6/12.

EXAMPLE

Consider the following numerical example: a 100 MeV
kinetic energy proton beam, momentum 444.6 MeV/c, a
field gradient B1 = 5 T/m, and quadrupole of length
0.8555 m. The k-value is 1.836 per metre. We shall di-
agram trajectories for four sets of initial conditions A-D.

Case x0 (m) x′
0 (radian) bend angle Figs.

A 0.5 0 54◦ 1,2
B 0 0.5 29◦ 3,4
C 0.25 0.5 56◦ 5,6
D 0.25 -0.5 −1◦ 7,8

Relative fractional Errors

We shall plot the relative errors for trajectories calculated
with and without the order x3

0, (x′
0)3 corrections computed

via the Green’s functions. There is a significant increase
of the accuracy of x, x′ as compared to the simple formu-
lae for a quadrupole with constant focusing strength. We
show also the relative errors in z, z ′ when the longitudinal
motion is taken to order x3

0, (x′
0)3 (Green’s function) com-

pared with order x2
0, (x

′
0)

2 (simple, linear quadrupole); the
increase in accuracy is not so great, but is essential to re-
ducing errors in the determinant.

Throughout, the figures are colour-coded. Green’s func-
tion: x (red) and x′ (blue) Green’s function z (red) and
z′ (blue). Simple, linear quad x (magenta) and x ′ (cyan).
Simple, linear quadrupole z (magenta) and z ′ (cyan).
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Figure 1: Case A. x, x′
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Figure 2: Case A. z, z ′

In this particular case, A, the aberrations in z, z ′ are
so small that the Green’s function and simple linear
quadrupole formulae produce indistinguishable results.
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Figure 3: Case B. x, x′
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Figure 4: Case B. z, z′
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Figure 5: Case C. x, x′
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Figure 6: Case C. z, z′
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Figure 7: Case D. x, x′

Determinant

Figures 9,10 show the evolution of the determinant
through the quadrupole. The formula (15) explains quite
well the relative size of the errors in Fig. 10; e.g. partial
cancellation between s4 and s5 terms in case D accounts for
the error. The other important point is that the high power

law for the error (s4 + . . .) implies that enormous gains are
made in accuracy by simply subdividing the range.
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Figure 8: Case D. z, z ′
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Figure 9: Variation of determinant before correction.
Case A (red), B (blue), C (magenta), D (cyan).
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Figure 10: Variation of determinant after correction.

CONCLUSION

We have presented formulae for large amplitude and an-
gle motion in a rectangular quadrupole magnet. Contrary to
the case of a spectrometer, where the particle beam makes
a single passage, we are concerned with periodic traversals
of a circular lattice; and conservation of the determinant is
important. By taking the longitudinal motion to higher or-
der, we have reduced the error in the matrix determinant for
small oscillations from order s2 to order s4 in the longitu-
dinal coordinate. For further details, see Ref.[4].
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