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Abstract

In this paper we discuss the effect on the emittance of the
residual dispersion in the insertion devices. The dispersion
in the straights could be generated by the lattice error, trim
dipole, and insertion device. The effect on the the emit-
tance is examined, and the dispersion tolerances are given
for the NSLS-II.

INTRODUCTION

The NSLS-II is a proposed third-generation light source.
The storage ring consists of 30 Double-Bend-Achromatic
cells with 15 fold symmetry. The natural emittance will
be 1 nm. Damping wigglers are empolyed to achieve this
unprecedented value. The damping wigglers, however, ex-
cite the emittance if the dispersion is nonzero. The residual
dispersion could be generated by the lattice error, the trim
dipoles and the insertion devices. In this paper we discuss
the tolerance on the residual dispersion in the straight sec-
tions of the NSLS-II.

LATTICE FUNCTIONS IN A BARE
STRAIGHT

The dispersion function in a ring accelerator can be cal-
culated by

D(s0) =

√
βx(s0)

2 sin πνx

∮ √
βx(s)
ρ

× cos(πνx − |ψx(s) − ψx(s0)|)ds, (1)

where ρ(s) is the bending radius, νx is the horizontal tune,
and ψx(s) − ψx(s0) is the horizontal betatron phase ad-
vance from s0 to s.

In a straight section, the lattice functions can be written
as [1]: β(s) = βc[1 + u2], α(s) = −u, γ(s) = 1

βc
, and the

betatron phase advance ψ(s) = tan−1 u. Here c denotes
the center of the straight, s = 0, and at that point αc = 0.
Also, we have introduced u ≡ s/βc. We note that these
functions can be written in the above u-presentation in any
drift space, except that the center point sc could be a virtual
point.

With the u-presentation, the dispersion function can be
written in a linear form

D(s) =
√

βc[Cx +
Sx

βc
s], (2)

where

Cx =
1

2 sinπνx

∮ s−
c

s+
c

√
βx(s)
ρ

cos(πνx − ψx(s))ds,
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Sx =
1

2 sinπνx

∮ s−
c

s+
c

√
βx(s)
ρ

sin(πνx − ψx(s))ds.

Note that Cx and Sx are constants for a given lattice.

DISPERSION GENERATED BY THE
INSERTION DEVICES

Effect on the other straights

In this subsection we calculate the dispersion function
change in straight 2 due to the ID in straight 1. We assume
the beta function is not changed by the insertion devices,
or, the beta function perturbation has been corrected. The
betatron phase advance between the ID magnet location s
and the point of interest s0 is ψ(s)−ψ(s0) = 2kπνx,cell +
tan−1 s−sc,1

βc
− tan−1 s0−sc,2

βc
, where νx,cell is the betatron

tune for one cell, k is the number of cells between these two
straights, and sc,1 and sc,2 are the centers of these straights.
From Eq.( 1), we found

D(s) =

√
(βcIw,1)2 + (L

2 Iw,1 − Iw,2)2

2 sinπνxB0ρ0

× [cosψ0,w − sin ψ0,w
(s − sc,2)

βc
], (3)

where L is the length of the ID, Iw,1 =
∫ L/2

−L/2
Bw(s)ds

and Iw,2 =
∫ L/2

−L/2
ds

∫ s

−L/2
Bw(s′)ds′ are the first and the

second integrals of the ID, respectively, ψ0,w = πνx −
2kπνx,cell−ψw, ψw = tan−1 Iw,1

L
2 −Iw,2

βcIw,1
, and B0ρ0 is the

rigidity of the reference particle.
Therefore, the maximum amplitude of the dispersion is

D(s) =

√
(βcIw,1)2 + (L

2 Iw,1 − Iw,2)2

2 sinπνxB0ρ0

√

1 + (
L

2βc
)2.

(4)

Note this is the result for one ID. In the case of more than
one ID, the total dispersion is the linearly superposition.
However, note that ψ0 changes for each straight, therefore
there is cancellation between the amplitudes. Here we esti-
mate the dispersion generated by one ID.

Take the NSLS-II damping wiggler as an example. In
the high-β straight, βc = 18 m, and using the APS ID field
tolerances (i.e., Iw,1 = 20 G · cm and Iw,2 = 20000 G ·
cm2)[2] and scale to the length of 7 m, one gets Dmax ∼
50 μm. The number is even smaller for the low-β straight
insertion devices. Therefore, the dispersion leaking from
the IDs is not a concern due to the tight ID field tolerances.
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Dispersion inside the ID

Following Ref. [3], we use the expression for the disper-
sion function inside an ID

D(s) =
1

k2
wρw

[1 − sin kw(s − sc)], (5)

where kw = 2π/λw and λw is the wiggler period, and ρw

is the maximum bending radius in the wiggler. Using the
NSLS-II damping wiggler parameters (i.e., kw = 62.8 m−1

and ρw = 5.6 m), we get the magnitude of the dispersion
to be 1

k2
wρw

≈ 45 μm, which is very small.

DISPERSION GENERATED BY CANTING

At NSLS-II we are considering canting the insertion de-
vices [4], especially the damping wigglers because they are
about 7 m long. However, the trim dipoles that are used to
create an orbit bump also generate dispersion. The closed
orbit change due to trim dipoles can be described by

xe(s) =

√
β(s)

2 sinπν

∑

i

√
βiθi cos(πν − |ψ(s) − ψ(i)|), (6)

where the sum is over the kickers, and θi = BiΔLi/B0ρ0

is the kick angle. This is the same as the expression for the
dispersion function given in Eq. (1); therefore, the disper-
sion function generated by the trims equals the closed orbit
change. If we arrange three kickers as θ L (−2θ) L θ,
namely, the kickers are L apart, and the center kicker is a
two times reverse kick, then the dispersion inside the chi-
cane is given by

D(s) = (L − |s − sc|)θ. (7)

The radiation opening angle of the NSLS-II damping wig-
gler is about 3 mrad, hence the canting angle will be in
the order of milliradian. Assume a canting angle θ = 1
mr. For a 7 m damping wiggler, the maximum dispersion
amplitude will be about 3.5 mm, therefore is more of a con-
cern. A limit on the maximum canting angle will be given
after we discuss the effect on the emittance.

EFFECT ON THE EMITTANCE

So far we have discussed the dispersion generated by the
lattice, the insertion device, and the trim dipole. In general,
the dispersion functions in the straight can be expressed as
follows:

D(s) = c0 + c1s − c2 sin kws (8)

D′(s) = c1 − c2kw cos kws. (9)

Therefore,

H = βD′2 + 2αDD′ + γD2

= βcc
2
1 +

c2
0

βc
+ βcc

2
2k

2
w cos2 kws

+
c2
2

βc
k2

ws2 cos2 kws − 2βcc1c2kw cos kws

+
2c0c2

βc
kws cos kws − 2c2

2

βc
kws coskws sin kws

+
c2
2

βc
sin2 kws − 2c0c2

βc
sin kws. (10)

The emittance integral

∫ Nwπ

−Nwπ

H
|ρ3|ds ≈ 2Nw

kwρ3
w

{4
3
(βcc

2
1 +

c2
0

βc
)

+
4
15

βcc
2
2k

2
w + (0.986 +

1
45

k2
wL2)

c2
2

βc

}
, (11)

where L = 2πNw/kw is the total length of the insertion
device.

The natural emittance is given by

εx,w

εx,0
=

1 + f1/f2

1 + f3/f4
, (12)

where f1 = Nw

kwρ3
w

[
4
3 (βcc

2
1 + c2

0
βc

) + 4
15βcc

2
2k

2
w + (0.986 +

1
45k2

wL2) c2
2

βc

]
, f2 =

∫ H0
ρ3
0
ds, f3 = Nwπ

kwρ2
w

and f4 = 2π
ρ .

H0 is the dispersion action in the bending dipoles. Note
this is the complete result, while in reference [5] only the
major terms are kept, for simplicity. Also, if the external
dispersion is zero and the ID length L � βc, then factor f1

is dominated by the 4
15βcc

2
2k

2
w term, and the natural emit-

tance goes back to the expression given in reference [3].
A large portion of the vertical emittance, however, is

contributed from the damping wiggler. This is because
ρ0 � ρw, and the vertical residual dispersion is of the same
order around the ring. For the NSLS-II 1-nm lattice, the en-
ergy loss in the damping wiggler is about the same as that
in all the bending magnets; for simplicity we assume the
vertical emittance is 4 pm, half of the final emittance, if
dispersion is zero in the wiggler.

DISPERSION TOLERANCES

The current proposal of IDs for the NSLS-II 1-nm lat-
tice is shown in Table 1. Including all the listed inser-
tion devices, we calculated the emittance increase ratio as
a function of the external dispersion, and the results are
shown in Fig. 1 and Fig. 2. When the dispersion is
nonzero, the beam size is also enlarged due to momentum
spread; therefore the effective emittance increase is also
plotted. Note the effective emittance is given by εx,eff =√

εx,0(εx,0 + Hxσ2
δ ). In the calculation, we use the dis-

persion given by Eq. (8), and the emittance growth ratio
is calculated using Eq. (12). The tolerance on the max-
imum dispersion and the corresponding emittance growth
are given in Table 2. For a 10% emittance increase, the hor-
izontal dispersion must be less than 1.2 cm and the vertical
dispersion must be less than 3.1 mm.

Using the same method, we calculated the emittances
as functions of the canting angle of the damping wigglers.
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Table 1: Parameters of NSLS II candidate insertion de-
vices.

Name U14 U19 U45 U100 DW SCW
Type SCU CPMU EPU EPU PMW SCW

λu (mm) 14 19 45 100 100 60
L (m) 2.0 3.0 4.0 4.0 7.0 1.0

Bw (T) 1.68 1.14 1.03 1.5 1.8 3.5

Figure 1: The horizontal emittance growth ratio as a func-
tion of external dispersion in the straights. The blue line is
for the effective emittance, and the red line is for the hori-
zontal emittance εx,0.

Figure 2: The vertical emittance as a function of the exter-
nal dispersion. The blue line is the effective emittance, and
the red line is the vertical emittance εy,0.

Table 2: Dispersion tolerances and emittance growth.

εx|y/εx|y,0 1.1 1.2 1.3
Dy(mm) 3.1 3.4 3.6
Dx(cm) 1.2 1.7 2.1

The results are shown in Fig. 3 and Fig. 4. In the calcula-
tion three 7-m damping wigglers were included and all of
them were canted. In the horizontal direction, the canting
angle has to be less than 1.5 mr in order for the emittance
growth to be less than 10%. In the vertical direction, the
canting angle must be less than 0.15 mr. However, the ini-
tial vertical emittance can be made smaller after linear cou-
pling correction; therefore, the vertical canting angle could

be larger.

Figure 3: The natural and effective horizontal emittance as
functions of the canting angle.

Figure 4: The equilibrium and effective vertical emittance
as functions of the canting angle.

CONCLUSION

We discussed the tolerance on the residual dispersion
generated by the lattice error, the trim dipole and the in-
sertion device. For NSLS-II we found that the dispersion
residue must be less than 1.2 cm horizontally and 3.1 mm
vertically to ensure a less than 10% emittance increase.
This is well within the capability of the present orbit feed-
back technology. The dispersion function generated by the
insertion devices is about 50 μm, therefore is not a con-
cern. With the same criterion, we found the damping wig-
gler canting angle must be less than 1.5 mr horizontally and
0.15 mr vertically.
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