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NEAR SYNCHROBETATRON COUPLING RESONANCES
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Abstract

Based on the work [1],[2], we discuss the topic of find-
ing the equilibrium beam distribution near synchrobetatron
coupling resonances. We show how this framework re-
ducesto the Sands resultsin the uncoupled case. A variety
of damping/diffusion effects can be included. We discuss
the case of IBS damping diffusionin detail, showing how it
can be combined with our analytical treatment of emittance
evolution. For the synchrobetatron coupled case, this for-
malism has been applied in detail to the case of dispersion
at RF cavities and crab cavities.

INTRODUCTION

The beam distribution in an electron storage ring can of -
ten be descibed by a Gaussian function of phase space. In
the case where the dynamics is approximately linear, then
motion aong the 3 invariants dominates and the distribu-
tion can further be described in the form

L 1 (o 92 g
I®) = Sl ie © p( g0 (92) )

where the g, (@ = 1,2, 3) are the eigeninvariants (action
variables) of the linear dynamics. They are quadratic quan-
tities in the phase space variables z;: g, = z7 G,z and can
be computed from the eigenvectors of the one turn map.
The average values of these quantities, the (g, ) arerelated
to the rms emittances ¢, by (g,) = 2¢,. Under these con-
ditions, then, the problem of finding the beam distribution
reducesto finding theform of theinvariants, ¢ ,, and thento
finding the evolution of, or equilibrium values of the emit-
tances. In particular, assuming that the one turn map is
not changing, the problem of beam distribution reduces to
finding the evolution of three quantities, even in a strongly
coupled case.

There are thus two pieces to describing the beam dis-
tribution: first, finding the invariants, and second, finding
the evolution of the emittances. Regarding the first part,
we formulate a perturbation theory to find approximate ex-
pressions for the invariants, particularly near linear reso-
nances. For the second part, damping and diffusion effects
will changethe beam momentswhich then affectsthe beam
emittances. This can be captured by the equation

Ag) = § ds'Tx [G%} @)

with Tr representing the trace of a matrix and the integra-
tion being around the ring to find the total change. Here,
Y;; = (#iz;) s second moment matrix for the distribution.
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In case the damping and diffusion have no phase space de-
pendence, the evolution equation takes on the simple form

A(ga) = —2Xa(ga) + da ©)

where y, are global damping decrements and d, global
diffusion coefficients. Thus, we immediately write down
the equilibrium solution

p— da
= 3

(9a)eq a=1,2,3. (4

In the case when the diffusion and damping have phase
space dependence, one must go back to Egn. (2). In this
way, the emittance effects of physical phenomenon such as
intrabeam scattering, or beam-beam diffusion can be com-
puted.

PERTURBATION THEORY
CALCULATION OF INVARIANTS

As stated in the introduction, the first part of finding the
equilibrium beam distribution involves finding the invari-
ants of the one-turn map matrix. And these invariants can
be constructed from the eigenvectors. Previous perturba-
tive treatments that cover resonances (e.g. [10]) have fo-
cussed directly on the invariants (actions — i.e. canonical
perturbation theory!), requiring an additional two invari-
ants near resonance. Ref. [17] uses a similar perturba-
tive approach, but does not include the case of resonance.
When formulated in terms of the eigenvectors, no addi-
tional quantities are needed. In addition to this, the con-
nection to the Quantum Mechanical eigenvalue problem,
clarifies this approach.

The main object of study is the one turn map matrix M.
M is symplectic [3] which means

MTJIM = J, ©)

where a superscript 1" means taking the transpose of ama-
trix, and J isthe symplectic inner product matrix

o O O

) (©)

0
0

OO OO O
oo o~ OO
O OO OO
O OO oo

-1
The six eigenvectors and eigenvalues of M satisfy

Ml}k = /\k'Uk- (7)
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The index k runs over +£1,4+2 +3. We normalize the
eigenvectors such that

v;JUk = isgn(j) ok, (8)

wheresgn(j) is1forj > 0and —1for j < 0, and T means
taking the complex conjugate and transpose of a matrix (or
vector). This normalization condition suggests the defini-
tion of an upper indexed object

v) = —isgn(j) U;J. 9
The normalization condition (8) then reads

Ujvk = 5jk- (10)
The invariant matrices are given from these eigenvectors
via

Go = —J(vav} +vivT) . (12)

with * representing complex conjugate, T representing con-
jugate transpose and J the symplectic inner product matrix
givenin Eq. (6).

We start with the uncoupled case. We consider motion
in the transverse-longitudina (z — z) plane.

Uncoupled Ring

A typical storage ring is designed to be uncoupled. If
we use betatron coordinates, defined by 2’3 = Bz with B a
dispersion matrix,

1 0 0 —p
0 1 0 —¢

B=|, .1 o | (12)
0 0 0 1

with 7 the dispersion and ' = dn/ds. Then the linear
one-turn map for the ring at some position s is of the form

M, 0
Muncoupled = ( 0 M > .

Because M, and M, are symplectic, following Courant
and Snyder, we can write them in the form

(13)

Yz T
(14)

M, = cos pigI+sin pp J, = et=’s J, = ( O Pa ) ,

and

M, = cospI+sinp,J, =e'='= J, = ( @z Pe > .

Yz —0y
(15)
2
Here, ﬁxa Qyp = _2ﬁ;y and Yz = 1-;# are the usual

Courant-Snyder |attice parameters. They are periodic with
period C; eg. B.(s+C) = B.(s). Notethat adding integer
multiples of 27 to u,. and p, does not change the one turn
map. We will thus, except where otherwise noted, assume
that an appropriate multiple has been added (subtracted) so
that

P,z € [_7777@ (16)
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We can aso find corresponding lattice parametersfor z.
For the case of asingle RF cavity, and taking lowest order
in u, we can show

ﬂz: a "Yz:/j/_sa az:_us(1_2d)

— 1
o o 5 17

where a = Ca,, with C thering circumferenceand «.. the
momentum compaction factor. We have taken the case of
abovetransitionin which p, = —pus. Also,

.1 (s
o=/ 2o

c

(18)

may be thought of as the partial momentum compaction
factor between the cavity and the point of observation.

Given the general forms (14) and (15) for M, and M.,
we can express the eigenvectors of M yncoupled 8

VBs 0
1 Z\;O‘J 1 0 (19)
Vg = —= N ;
VAN V2 | VB
0 VA

with corresponding eigenvalues e+ and e**=, which can
be checked by direct multiplication.The above v, and v,
are positive modes, and the corresponding negative modes
aev_, = w) andv_, = —ivi. Using the notation in
(9), we can express the normalization as v*v,, = v*v, =
v %v_, = v *v_, = 1 and all other combinationsgive 0.
To be explicit, because v, is apositive mode (likewise v.),
v® = —jvl J.

Adding a perturbation

We would like to be able to include the case of reso-
nances in our perturbation theory. This will require an
additional step beyond perturbing the uncoupled one-turn
map. In particular, we must start with the one-turn map ex-
actly on resonance and consider both coupling and differ-
ence from resonance as perturbations. Explicitly, we write

M = Mg + My, + Mi¢ (20

where M, is the difference from resonance and M isa
coupling perturbation. We consider both of these matrices
to befirst order in somesmall parameter €. Thiswill suffice
for sum and difference resonances, but it turns out that this
needs to be reexamined to correctly treat integer and half-
integer resonances. See [1] and [2] for more details.

These ideas, along with the realization that we are deal-
ing with a symplectic operator, rather than aHermitian one,
allow us to formulate the perturbation theory in a quite
clear manner.

To discuss the results of the perturbation analysis, let us
first write the perturbation in the form

My, = PM, (21)
Now, consider the quantities.
Tmn = UmOPUnO7 (22)
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The v,,¢ are the eigenvectors of M. These are analogues
of the matrix elementsin quantum mechanical perturbation
theory. Theonly difference hereisthat sincethe underlying
operator is symplectic instead of Hermitian, the symmetry
properties of these quantities are different. * We find that
all our results can be expressed in terms of the r,,,,,. In the
case of a sum and difference resonance, we find that the
coupled eigenvectors involve a coupling angle 6. For the
difference resonance with a purely coupling perturbation
P,
2|T12|

tanf = (23)
,U/ac - ,Uz
and for the sum resonance,
2|r—
tanh6 = 212l (24)
Mo + [y

Crab Cavity

We consider a single crab cavity[18]. The map for the
crab cavity is given by

1 0 0 O

_ 10 1 & O
Tcrab =I+P= 0 0 1 0 ) (25)

& 0 0 1

where &, gives the strength of the cavity. In the case where
the crab cavity is used to correct for a half crossing angle
d at the interaction point of a collider [7], assuming no
resonance, &, isrelated to that crossing angle by

single crab cavity

(26)

P
v/ BrB
where ;. is the beta function at the crab cavity and 57 is
the beta function at the interaction point.
Applying our formalism to the perturbation P in (25),
we find for the coupling parameter

crab cavity pair

2® sin(mv,)
¢, = { \/ BrB

€ =2|rp12] =& T 2n? (27)

a3z
s

From this expression, we can immediately see that for
small synchrotron tune and near a sum or difference res-
onance, a crab cavity will cause alarge coupling perturba-
tion?.

INCLUSION OF DAMPING/DIFFUSION
TO FIND EMITTANCES

For the case of damping and diffusion due to radiation,
the damping matrix is given by

Bs(s) = BBB!

1n particular, they satisfy

_Sgn(m)Sgn(n)T:m )
*—m—n .

Tmn =
Tmn = T
2Thisresult is derived in a different way in [5]
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—Ubéz 0 0 —n(bz + 77551)
_ _n,b(h bw 0 n/(bx - bz - nb5w)
o 0 —b,n 0O —bynn’
bsz 0 0 b, + nbsy

where b,, is the damping effect from the RF cavity, and b,
and bs,. arethe damping effectsfrom bending magnets. The
diffusion matrix is given by

2

/’7/ /’77/72, 0 _/r)/
Dy =BDET =a | "M " 8 7 (29)
-n - 0 1
with )
55 o h
d(s) = Y 30
)= BB TP (m) 0

with o the fine structure constant, ~ the relativistic energy
factor, p(s) the bending radius of the bending magnets, #
the reduced Planck constant,and m the electron rest mass.
Aswe see from the p(s) in the denominator, diffusion only
happens in the bending magnets.

Now that we have the global diffusion coefficients and
damping decrements for the uncoupled case, Eq. (4) gives
the equilibrium values of the invariants, or in terms of the
emittances e, = (g,)/2 wefind

B 48\/_

r =

2U0 A (3D
48\/_ Xy _f STo71
°T M7,

These are the famous results of Sands [4].

(32)

THEORETICAL PROPERTIES OF
FRAMEWORK

Herewe consider two interesting properties of the frame-
work: sum rules and anti-damping.

Sum Rules

The sum of thelocal damping coefficients givesthetrace
of A(s). From this we can derive aglobal sumrule,

X1+ X2+ X3=Xe + Xy T Xz (33)

where x. .. are the global damping decrements for the
uncoupled case. Equation (33) is a manifestation of the
well-known Robinson theorem [15].Likewise, under some
specific conditions, one can aso obtain a sum rule for the
invariants and diffusion coefficients. For the invariants, to
lowest order, we find:

G1—Gy =
Gi1+Gy =

sum res.
dif. res.

G, — G,

G, + G, (34)

and likewise, for the global diffusion coefficients,
d_l — d72 =
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di+dy = dp+d. = invaiant  dif. res.
di = d int z res.
do = d, int. x res. (35

From the sum rule (35) for sum and difference reso-
nances (global version), and using (4), we have

sum res.
dif. res.

X1(91) eq — X2(92) 0q = ihvarignt
X1(91)eq T X2(92) o = invariant

Since x1,2 must be positive for stable motion, it follows
that this sum rule imposes a stability condition for parti-
cle motion. For example, in case of coupling between the
two transverse betatron motions, Eq.(36) implies that the
motion is stable near a difference resonance and possibly
unstable near a sum resonance. This is a familiar result
involving the sum rule of equilibrium beam emittances[3].
The present formalism therefore containsin one framework
the Robinson sum rule and the emittance sum rule near lin-
ear resonances.

In the case where the coupling near asum/differenceres-
onance occurs in synchrobetatron space, and the operation
isabovetransition, wefindthat ., = —u, (Seelater) where
15 1S the usual (positive) synchrotron phase advance per
turn. Thus, intermsof p 5, thereisasign reversal in the def-
inition of degeneracy so that asum resonancehas i o = s
and difference resonance has 0 = —pus. Intermsof pug,
then, stability applies near a sum resonance and instabil-
ity occurs near a difference resonance. Thisis aso afa-
miliar result [16], associated with the longitudinal negative
mass above transition. In the present paper, however, we
make the choice to relate our definitions of resonance to
v, S0 that as in the case of x-y coupling, the difference
resonanceis stable and the sum resonanceis unstable. This
has the advantage of permitting a uniform treatment of syn-
chrobetatron coupling and transverse betatron coupling. To
reiterate, by “sum resonance’, we mean v, + v, isnear an
integer, and for a “difference resonance”’, v, — v, is hear
an integer.

(36)

Emittance Coupling
For the sum resonance, we find

cosh? gdx + sinh? gczz

P 37
! 4(COSh2 gX:r, — sinh? ng) S
- 207 1.207
. 2+ B sinh §dz + cosh §dz (39)

4(—sinh® &x, + cosh® £x.)
while for the difference resonance, we find

207 | 2607
. _ cos® 5d; + sin” 5d, (39)
! 4(cos? £x, +sin® £x.)

sin? gdx + cos? gdz

€, = - (40)
2 4(s1n2 gxz + cos? ng)
Note that in the case where x, = x., wefind that
0 0
e = cosh? € + sinh? ¢ (41)
05 Beam Dynamics and Electromagnetic Fields

792

Proceedings of PAC07, Albuquerque, New Mexico, USA

0 0
€5 = sinh? ¢, + cosh? Ze. (42)
2 2
for the sum resonance and
0 0
€ = cos? 561 + sin? §€Z (43)
0 0
€ = sin? 561 + cos? §€Z (44)

for the difference resonance. Thus, in this case, it makes
sense to talk about emittance coupling: the effect of the
coupling is smply to mix together the equilibrium emit-
tances. If we were talking about transverse = — y coupling,
Xz = X. would indeed be approximately correct in many
situations and this gives a justification for using that con-
cept for betatron coupling. For the case here of synchrobe-
tatron coupling, typically x . = x./2, and thus the concept
of emittance coupling is not precise.

Anti-damping Instability

The damping decrementsfor the sum resonance show an
interesting effect. One of x; o will become negative for a
finite value of 4. Specifically, supposethat x . > x, which
istypicaly the case. Then x; vanisheswhen

A /% = coth(g).

For 6 larger than this, 1 becomes negative, and thereisan
instability. Thisisanalogousto the case wherethe damping
partition number D is greater than 1, in which case, x .. is
likewise negative, indicating an instability. We refer to this
as an “anti-damping instability”.

(45)

NON-UNIFORM DIFFUSION/DAMPING

When the damping and diffusion effects have a depen-
dence on the phase space, or the phase space distribution,
the evolution equations for the emittances become more
involved. Intrabeam scattering is an example of this: the
damping and diffusion effects depend both on the phase
space position and on the distribution itself. The effect of
beam-beam interactions can aso be included within this
framework [19].

I ntrabeam Scattering

To find the emittance growth due to IBS, we must first
find the growth in the moments due to IBS and then project
this onto the invariants (Eq.2). In [6] expressions of the
form

A3
— = AK,, 46
i AKap (46)
were derived, with
Nrdc
= 47
A 321333 v4eze,0506 (47)
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and
hab
Kab = /dQ— In h1 (48)
h3
with
hap = (faf’b — AaAb) (49)
where 7, and A, are perpendicular unit vectors and
hl = Aabgaéb (50)
h3 = CabAaAb (51)

Here, A isrelated to the spatial second moments of the dis-
tribution (normalized by a minimum approach distance).
Likewise C are the normalized momentum second mo-
ments. These were shown to reduce to the results of
Bjorken-Mtingwain the so-called “ Coulomb-L og approxi-
mation”:

Kap ~ 2L / doltat (52)
h3

Combining IBSwith Perturbation Theory

The IBS evolution equations are expressed in terms of
the second moments of the distribution at a given point in
the ring. One can thus express these second moments in
terms of invariants and emittances. The expressionsin (52)
depend only on the matrices C, , .. In the uncoupled case,
C, and C, aregiven by

ﬂz 0 _’Ygz
C. = 0 0 0 (53)
-G, 0 '72Hac
Vellr Vellally  — YN
C. = | vmny =mp  —axymy | (54)
—Ne —oyny 0
We have introduced the definitions
Gay gy N,y + ﬁz,yn;,y (55)
Goy = Vw,ynz,y""aac,yn;,y (56)

Near a sum resonance, one finds

0 0
C = coshz(i)(cz +sinh2(§)(Cy + sinh() C;,
2,0 2,0 : +
C; = sinh (i)Cz + cosh (E)Cy + sinh(9) CT,
with

0 \/BzBycosg 0

Cl= v/ BzBy cos ¢ 0 0
0 0 0

(57)

Using these expressions, for large enough 6, one can
show that no IBS equilibrium is possible, even below tran-
sition!
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CONCLUSIONS

We have described a framework with which to calculate
the beam distribution near synchrobetatron coupling reso-
nances. Thisframework allows the computation of analyti-
cal results. We can thus derive many useful results, such as
stop-band widths, coupled invariants, coupled emittances,
and even coupled emittance evolution in the presence of
Intrabeam Scattering.
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