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Abstract 
   There exist analytical approximations that express the 
transverse geometric impedance of tapered transitions in 
the inductive regime as a functional of the transition 
boundary and its derivatives. Assuming the initial and 
final cross-sections and the transition length are fixed, one 
can minimize these functionals by appropriate choice of 
the boundary variation with the longitudinal coordinate. 
In this paper we numerically investigate how well this 
works for the cases of optimized tapered transitions in 
circular, elliptical and rectangular geometry by running 
ABCI, ECHO, and GdfidL EM field solvers. We show 
that a substantial reduction of impedance for optimized 
boundary compared to that of a linear taper is indeed 
possible in some cases, and then we compare this 
reduction to analytical predictions.    

INTRODUCTION 
   Yokoya has derived the low frequency transverse 
impedance of an axially symmetric tapered transition [1], 
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where k is the wavenumber of the perturbing field, 0Z  the 
free space impedance, ( )zr  the radius of the tapered 
circular chamber, and prime denotes derivative with 
respect to z. He has also pointed out that when a transition 
between the minimum and the maximum radii (rmin and  
rmax) occurs over a length L, the exponential boundary  
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is the impedance due to a linearly tapered boundary 
 ( )min( ) 1 ( 1) /linr z r z Lα= + − × .              (5) 
  As per Eq. (3) a large reduction in impedance by going 
from linear to exponential taper occurs only in cases of 
very large radial variations (e.g. a factor of 2 impedance 
reduction for α =20). 
   Stupakov [2] re-derived Eq. (1) by a different technique 
and proved that it is valid all the way down to k=0. Using 
this technique, Stupakov [3] also determined the vertical 

(dipolar) impedance of a flat rectangular chamber of 
constant half-width w and varying half-height ( ) wzh << , 
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which amounts to a much larger impedance than Z⊥  for a 
round chamber of the same vertical profile, r(z)=h(z). 
   Recently, Podobedov and Krinsky calculated low 
frequency transverse impedances for a gradual taper with 
elliptical cross-section [4-5].  In the inductive regime and 
large horizontal-to-vertical aspect ratio, w/h >>1 these 
(dipolar) impedances could be expressed as  
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where h<<L in Eq.(7), and w<<L in Eq. (8). While these 
expressions were derived for confocal elliptical boundary, 
they are expected to approximately hold in general, if the 
above assumptions are held. Since the functional Eq. (7) 
is of the same form as Eq. (1) the optimizing boundary 
given by Eq. (2) (with r replaced by h) applies directly to 
the horizontal impedance. By analogy with Eq. (3) we 
expect large horizontal impedance reduction only in cases 
of very large height variation  hmax/hmin>>1.  
  On the other hand, for the vertical impedance 
minimizing the functional Eq. (8) (or Eq. (6)) we obtain 
the boundary  
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with the corresponding impedance, _y optZ ,  
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reduced more effectively than in the horizontal case, e.g. 
Eq. (10) gives a factor of 2 reduction in Zy for β =7.6.  
   The optimizing boundaries given by Eq. (2) and Eq (9) 
are qualitatively similar. Compared to the linear case both 
have reduced slope when h(z) is small and vice-versa. 
Therefore, using optimal tapering Eq. (9) to minimize Zy 
should lower Zx as well; similarly Eq. (2) boundary not 
only minimizes Zx but results in lower Zy as well.   
   Eq. (1) and Eqs. (6-8) have been derived under several 
restrictive conditions. Impedance reduction, Eq. (3) and 
Eq. (10), should therefore be regarded as approximate. To 
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independently probe their accuracy we have performed 
numerical calculations using ABCI [6], ECHO [7], and 
GDFIDL[8] EM field solvers for tapered structures with 
round, elliptical and rectangular cross-sections.  
  We consider gradual tapers, (hmax-hmin )/L <<1. For 
elliptical and rectangular structures we take the aspect 
ratio at the minimum cross-section of wmin/ hmin =3 or 
larger. Nonlinear boundary is approximated by a piece-
wise linear boundary. Bunch length is chosen to be 
mainly in the inductive impedance regime. The minimum 
radius rmin (or half-height hmin for 3D structures) is taken 
to be 1 cm for all calculations presented in this paper. 
Dual tapered structures of both convex (cavity-like) and 
concave (collimator-like) geometry have been used.  

AXIALLLY SYMMETRIC TAPERS 
   ECHO simulations were done for concave structures 
with rmax=2, 6, 10, 14 and 18 cm and L=(rmax-rmin)×80/17.  
ECHO results (-Im[ Z⊥ (0)]), with estimated accuracy of 
<1%, for linear taper are 1.12, 2.00, 2.20, 2.27 and 2.31 
kΩ/m; exponential tapering values are 1.08, 1.58, 1.43, 
1.31, and 1.20 kΩ/m. These agree to <12% with Eq. (1) 
and are in perfect agreement with more precise analytical 
results of [9].  Impedance reduction ratio, plotted in Fig. 
1, is in very good agreement with Eq. (3). 
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Figure 1: Z┴ reduction due to Eq. (2) tapering. 
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Figure 2: Z┴ for Eq. (5) and Eq. (2) tapering,  α=18. 

 
   A separate set of calculations was done with ABCI for 
convex geometry, α=2 (L=5 cm) and α=18 (L=80 cm). 
Each geometry was calculated at several mesh sizes and 
results were extrapolated to zero mesh size to improve the 
accuracy (see Appendix of [9]). Impedance values agree 
well with ECHO; the ratio is shown in Fig. 1.  

   Finally, Fig. 2 shows impedances found by ECHO as a 
function of frequency for the case α =18. Clearly, the 
reduction predicted by Eq. (3) for Im[ Z⊥ ] holds in the 
inductive regime range, k<~1/rmin. Re[ Z⊥ ] remains small 
for both linear and exponential tapers. 

ELLIPTICAL TAPERS 
   GDFIDL was used to calculate impedances of convex 
structures with confocal (i.e. w(z)2-h(z)2 = const.) elliptical 
cross-section. Each taper was evenly sub-divided into 4 
linearly tapered pieces. Three cases of β =4.5, 9, and 18 
(with L=20, 46, and 96 cm) were calculated, with the 
smallest mesh size of 0.25, 0.25 and 0.4 mm.  As with 
ABCI we extrapolated impedance to zero mesh size. 
Results for wmin/hmin=4, given as Zx[kΩ/m]/Zy[kΩ/m]  are 
a) linear tapering: 0.626/3.03, 0.761/3.64, 0.895/3.88;      
b) Eq. (2) tapering: 0.518/2.62, 0.548/2.28, 0.550/1.78;     
c)  Eq. (9)  tapering: 0.528/2.54,   0.583/2.16,  0.641/1.65.  
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Figure 3: Zx reduction due to Eq. (2) tapering. 
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Figure 4: Zy reduction due to Eq. (9) tapering. 

 
   Horizontal impedance is 10-20% lower than Eq. (7), it 
agrees better with more precise formulas of [4-5], that do 
not require w/h>>1. Disagreement for the vertical 
impedance and Eq. (8) is larger, especially at large β,  
possibly due to tapers not being sufficiently long and/or 
flat. The cause is currently under investigation. 
  Impedance reduction ratio is shown in Figs. 4-5. 
Substantial reduction is achieved for large β;  also we 
confirmed that both Zx and Zy reduce for either Eq. (9) or 
Eq. (2) tapering. As expected there is some disagreement 
with the theory, however for the horizontal it seems to 
disappear if we go to flatter tapers (see wmin/hmin =8 point 
in Fig. 3). For the vertical the disagreement is more 
profound. Reduction factors due to exponential, Eq. (2), 
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and optimal vertical, Eq. (9), tapers are closer to each 
other than the theoretical predictions Eqs. (3) and (10).  

   Finally, Fig. 6 shows that Zy reduction holds up to 
rather high frequencies k~1/wmin.We also confirmed that 
for Zx it extends up to k~1/hmin. 
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Figure 5: Zy for Eq. (5) and Eq. (9) tapering,  β=18. 

   RECTANGULAR TAPERS 
   Rectangular tapers of constant width were calculated in 
concave geometry. Maximum height was adjusted as 
shown in Table 1, maximum cross-section had a square 
shape, w=hmax; additionally w/hmax=2 case was calculated 
at β=5. Taper length was taken from L=(hmax-hmin)×80/17. 
Calculations were done with 1 mm mesh size. To check 
the accuracy we repeated the ECHO run for β=5, Eq. (9) 
taper, with 0.5 mm mesh, and the wake-potentials came 
out virtually the same. Similar to the elliptical case we 
obtain Zy much smaller than analytic predictions (see 
Table 1).  Zy reduction ratios shown in Fig. 6 are higher 
than Eq. (10). Flattening the structure (L fixed) makes the 
vertical reduction ratio disagree even more. On the 
contrary, for the horizontal impedance we observe better 
agreement with Eq. (3). It improves even further for 
flatter tapers.   
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Figure 6: Zx reduction due to Eq. (2) tapering (left) and Zy 
reduction due to Eq. (9) tapering. 
 
 
Table 1. Zy values from ECHO and (parenthesis) Eq. (6)  
hmax, cm Zy_lin, kΩ/m Zy_opt, kΩ/m Zy_opt /Zy_lin 

3 3.25 (5.3) 2.90 (4.3) 0.89 
5 5.62 (9.6) 4.44 (6.1) 0.79 
7 7.70 (13.7) 5.50 (7.2) 0.70 
9 10.1 (17.8) 6.1 (8.0) 0.60 

CONCLUSION 
  By running extensive simulations with EM field solvers 
ABCI, ECHO, and GDFIDL we have investigated the 
effectiveness of non-linear tapering to further reduce low 
frequency broadband transverse geometric impedance of 
gradual tapers as compared to a linear tapering. For 
transitions with large cross-sectional changes optimal 
nonlinear tapering does provide large reduction in 
transverse impedance. Exponential tapering of the radial 
boundary, Eq. (2), reduces Z⊥  for axially symmetric case; 
the same tapering in the vertical profile reduces Zx (for 
3D flat tapers). For a factor of 20 change in r (or h for 
3D) a factor of two impedance reduction is possible. For 
these two cases theoretical predictions for impedance 
reduction as well as the absolute values of the impedance, 
agree well with simulations. On the other hand, the 
vertical impedance simulations indicate that while the 
boundary given by Eq. (8) reduces Zy by a slightly larger 
factor than what Eq. (2) achieves for Zx, the reduction 
falls short of theoretical predictions. We note that for the 
geometries we considered, the values of Zy for a linear 
taper were lower than what is given by Eq. (6) and Eq. (8) 
due to tapers not being sufficiently long and/or flat, or 
possibly due to other factors. Simulations for longer and 
flatter tapers are now in progress. 
   We found that for flat 3D case optimal tapering for one 
plane reduces the impedance in the other plane. 
Additionally, we established that impedance reductions, 
predicted from zero-frequency considerations, hold well 
up to frequencies k~1/wmin (Zy), k~1/hmin (Zx), and k~1/rmin 
( Z⊥ ). Also, we observed very similar impedance 
behaviour for rectangular and elliptical structures, as well 
as established that piece-wise linear tapering with only a 
few linear segments (which would be easier to 
manufacture) works almost as effectively as a full non-
linear tapering. Finally, we note that in the common 
practical case when the end cross-sections and transition 
lengths are fixed, and the small cross-section is relatively 
flat, the vertical profile tapering considered in this paper 
is the only way to reduce the low frequency broad-band 
geometric impedance.   
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