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Abstract 
The geometric symmetry of an rf structure can be 

expressed by a group of symmetry operations that keep 
the configuration invariant [1]. For a periodic structure, 
the geometric symmetry is described by a space group 
containing translations, reflections, and other operations. 
Eigenmodes in the structure can be classified according to 
the irreducible representations of the space group of the 
structure. In this paper, we apply this method to a side-
coupled structure (SCS) [2] which is widely used for 
proton accelerators. 

INTRODUCTION 
Many periodic accelerating structures have both 

translational and other geometric symmetries. An entire 
symmetry of a given structure can be expressed by a 
group of symmetry operations that keep the structure 
invariant. The symmetry group of the structure has 
several irreducible representations that can express the 
fundamental patterns of transformations induced by the 
symmetry operations. Eigenmodes in the structure can be 
classified according to these irreducible representations. 
This approach provides a general method of classifying 
the eigenmodes in any cavities. 

For a periodic structure, its geometric symmetry can be 
expressed by a space group containing translations, 
reflections, and other operations. The application of space 
groups to rf problems was partly discussed in [3]. In this 
paper, we apply this method to the side-coupled structure 
which is widely used for proton accelerators. This 
example is practically important as well as interesting 
because it has a non-symmorphic space group. First, we 
find the symmetry group of this structure, and derive its 
irreducible representations. Then, we classify some of its 
eigenmodes according to these irreducible representations. 

SYMMETRY GROUP OF THE SCS 
A typical configuration of the side-coupled structure is 

depicted in Fig. 1. The SCS is usually operated under a 
phase difference of π/2 between adjacent accelerating- 
and coupling-cells. It has a fundamental period of d. We 
take the Cartesian coordinates as shown in Fig. 1. To 
simplify the analysis, we assume that the structure 
contains N fundamental periods where N is a huge integer, 
and assume the periodic boundary conditions at the ends 
of the structure. 

Let us denote an operation, which takes a point r to 
(αr+b), by a symbol {α|b}, where α is any of rotations or 
reflections. Then, the translational symmetry of the 
structure can be expressed by a translation group, 

{ }{ }| | 0,1,..., 1nT n Nε≡ = −t , where ε is an identity 

operation, nt ( ˆnd≡ z ) denote the primitive translation 
vectors, and ẑ  is the unit vector in the positive z direction. 
An entire symmetry of the structure is expressed by a 
space group, 

 1 2 8...G R T R T R T= + + + ,   (1) 
where the G has been expressed by a union of the cosets 
of T. The coset representatives, R1 to R8, are given by 
{ }|ε 0 , { }2 |C τ , { }2 |yC τ , { }2 |xC 0 , { }|I 0 , { }|zσ τ , 

{ }|yσ τ , and { }|xσ 0 , where C2, C2
y, and C2

x are the 

rotations through π about the z, y and x axes, respectively, 
I is the space inversion, σz, σy, and σx are the mirror 
reflections in the x-y, z-x, and y-z planes, respectively, and 
τ (≡ ˆ / 2dz ) is a non-primitive translation vector. We can 
notice that this group contains several operations 
involving the non-primitive translations. Space groups 
involving such operations (screws or glides) are called the 
non-symmorphic space groups [4]. 
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Figure 1: A sketch of the side-coupled structure. 

IRREDUCIBLE REPRESENTATIONS 
We next derive the irreducible representations of the 

space group G of the SCS. This is done in three steps. 
First, we present the irreducible representations of the 
translation group, and define the wavevector k. Next, we 
define the group of the wavevector k, G(k), and derive its 
irreducible representations. Finally, we derive the 
irreducible representations of the entire space group G. 
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Translation Group 
Because the translation group T is a cyclic group of 

order N, it has N one-dimensional irreducible 
representations. Their characters are given by 

 { }( ) ( )| expn niχ ε = ⋅k t k t ,  (2) 
where the wavevector k is given by 

ˆ((2 / ) 1) /p N dπ= −k z , and p is an integer ranging from 
1 to N. Because N is a huge integer, the wavevector takes 
almost continuous values inside the first Brillouin zone, 

/ /zd k dπ π− < ≤ . 
If an eigenmode, Ek, belongs to an irreducible 

representation that is specified by a wavevector k, it is 
transformed by a translation by 

{ }| ( ) ( ) exp( ) ( )n n niε ≡ − = ⋅k k kt E r E r t k t E r . (3) 
This relation is known as the Floquet's theorem. 

 The first Brillouin zone is shown in Fig. 2. Following 
the solid state physics, we give notations to three specific 
points in the Brillouin zone: a point Γ at the origin, kΓ = 
(0, 0, 0); points Δ at kΔ = (0, 0, kz) with 
0 < |kz| < π/d; and a point X at kX = (0, 0, π/d). 

d
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Figure 2: The first Brillouin zone in one dimension. 

The Groups of the Wavevector k 
For each wavevector k in the Brillouin zone, we can 

define a subgroup, G(k), of G. This subgroup consists of 
operations that keep the k vector invariant by allowing a 
difference by a reciprocal vector K ( ˆ2 / dπ≡ z ). For the Γ 
and X points, G(k) coincides with the entire space group. 
For the Δ point, the G(kΔ) is given by 
  { } { } { } { }2( ) | | | |y xG T C T T Tε σ σΔ = + + +k 0 τ τ 0 . (4) 
Note that the G(k) is non-symmorphic in every case. 

To derive the irreducible representations of G(k), we 
need separate treatments for two cases: (i) when the k is 
located inside the Brillouin zone, and (ii) when the k is 
located on the Brillouin zone boundary. In the case (i), the 

irreducible representation matrices of G(k) are given by 
 { }( ) ( )ˆ ˆ| exp ( )D iα α= ⋅ Γk b k b ,  (5) 

where, ˆ ( )αΓ  is an irreducible representation matrix of a 
point group G0(k), which is composed of the rotational 
parts, α, of the operations {α|b} of G(k). We can apply 
this relation for the Γ and Δ points.  

At the Γ point, the point group G0(kΓ) is given by 
{ }2h 2 2 2D , , , , , , ,y x

z y xC C C Iε σ σ σ≡ , where the standard 
Schönflies symbol has been used for the point group. 
Using the irreducible representations of this group [4], we 
can deduce the irreducible representations of G0(kΓ), as 
given in Table 1. 

At the Δ point, the point group G0(kΔ) is given by 
{ }2v 2C , , ,y xCε σ σ≡ . From its irreducible representations, 

the irreducible representations of G(kΔ) are deduced, as 
shown in Table 2.      

At the X point (the case (ii)), we cannot apply Eq. 5 to 
the non-symmorphic group, therefore, we apply the 
Herring's method for deriving the irreducible 
representations of G(kX). We can carry out this procedure 
in a similar manner as that described in Chapter 11 of [4] 
for a rutile crystal structure. As a result, we obtain two 
two-dimensional representations, X1 and X2, as given in 
Table 3. 
Table 2: Irreducible representation matrices of the G(kΔ) 
at the Δ point. The irreducible representations are named 
after those of C2v. 

Irr. Rep. { }| nε t { }2 |C τ  { }|yσ τ  { }|xσ 0
A1 nie ⋅k t  ie ⋅k τ  ie ⋅k τ  1 
A2 nie ⋅k t  ie ⋅k τ  ie ⋅− k τ  -1 
B1 nie ⋅k t  ie ⋅− k τ  ie ⋅k τ  -1 
B2 nie ⋅k t  ie ⋅− k τ  ie ⋅− k τ  1 

Space Group 
At the Γ and X points, the irreducible representations of 

the space group are given by Tables 1 and 3, respectively. 
At the Δ point, we can decompose the space group into 
the cosets of G(kΔ) as 

Table 1: Irreducible representation matrices of G(kΓ), and of the space group G, at the Γ point. The irreducible 
representations are named after those of D2h. 

Irr. Rep. { }| nε t  { }2 |C τ  { }2 |yC τ  { }2 |xC 0 { }|I 0  { }|zσ τ  { }|yσ τ  { }|xσ 0

Ag 1 1 1 1 1 1 1 1 
B1g 1 1 -1 -1 1 1 -1 -1 
B2g 1 -1 1 -1 1 -1 1 -1 
B3g 1 -1 -1 1 1 -1 -1 1 
Au 1 1 1 1 -1 -1 -1 -1 
B1u 1 1 -1 -1 -1 -1 1 1 
B2u 1 -1 1 -1 -1 1 -1 1 
B3u 1 -1 -1 1 -1 1 1 -1 
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 { } { }| ( ) | ( )G G I Gε Δ Δ= +0 k 0 k .  (6) 

Since we have obtained the irreducible representations of 
G(kΔ), the irreducible representations of G are given by 
induced representations of them onto the G. Results are 
given in Table 4. 

CLASSIFICATION OF EIGENMODES 
For each k vector in the Brillouin zone, the eigenmodes 

in the structure can be classified according to the 
corresponding irreducible representations (i.e., Tables 1, 4, 
and 3 for the Γ, Δ, and X points, respectively). For one-
dimensional representations, each representation matrix 
(scalar) expresses an eigenvalue for each operation. When 
two eigenmodes, E1

(λ) and E2
(λ), belong to a two-

dimensional representation λ, they are transformed by an 
operation {α|b} according to a relation, 
  { } { }( ) ( ) { }( )( ) ( ) ( ) ( ) ( )

1 2 1 2| | |Dλ λ λ λ λα α α=b E b E E E b , 

where D(λ) is a representation matrix for {α|b}. Note that 
the representation matrices are arbitrary within a 
similarity transformation. 

An example of numerical calculations of dispersion 
curves for the SCS is shown in Fig. 3. The dimensions of 
the SCS were taken from a cold model [5] for the former 
Japanese Hadron Project. By looking at field distributions, 
these eigenmodes have been labeled by the irreducible 
representations, as shown in the figure. 

CONCLUSIONS 
We analyzed a symmetry group of the side-coupled 

structure, and derived the irreducible representations of 
the space group of the structure. The eigenmodes in the 
structure can be classified according to these irreducible 
representations. 
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Figure 3: A dispersion relation of the side-coupled 
structure. Only the lowest passband is shown. 
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Table 3: Irreducible representation matrices of G(kX), and of the space G, at the X point. 
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Table 4: Irreducible representation matrices of the space group G at the Δ point. 
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