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INTRODUCTION

The nominal design gradient in the main linacs of the In-
ternational Linear Collider (ILC) is 31.5 MV/m for a beam
current of 9.0 mA. However, the superconducting cavities
built to date have demonstrated a range in sustainable gra-
dient extending well below this goal, being limited by Q
drop-off and quenching. Thus, an economically feasible
cavity acceptance rate will include a certain percentage of
sub-performing cavities. An important question that needs
to be addressed is, For a string of cavities rated to vari-
ous levels of gradient and powered from a common source
how can we optimize the overall gradient? Along with ad-
justable cavity coupling—or loaded Q factor—we assume
adjustable RF power so that gradient can be leveled in non-
nominal cavities, to avoid quench-inducing overshoots.

In the ILC an RF unit comprises three cryomodules con-
taining a total of 26 nine-cell cavities, which are fed by one
klystron that nominally feeds equal power to all cavities.
One simple way of running such a unit is to set RF power,
beam arrival time, and all loaded Q’s so that the power is
matched and the gradient in all cavities equals the gradient
limit in the poorest performing cavity. This conservative
strategy, however, sacrifices gradient and can be improved
upon. One improvement strategy is to adjust the cavity cou-
plings individually (possible, since circulators are assumed
in the baseline ILC design) or in pairs (when circulators are
not needed) using the movable antennae of the fundamental
mode couplers. Another strategy is to use variable power
tap-offs (VTO’s)[1] by which the RF power to succeeding
pairs of cavities can be made to differ. These solutions will
not be matched, resulting in power inefficiency and a gra-
dient variation along the beam that needs to be limited.

In this report we study the effect on overall gradient for
various combinations of these ideas. Deciding which strat-
egy is best can then be done by balancing gradient with the
cost and complexity of hardware such as circulators and
variable power tap-offs.

OPTIMIZATION

The gradient in a superconducting, standing wave cav-
ity, assuming a square RF pulse, can be written in normal-
ized parameters as (for the non-normalized equation see
e.g. [2],[3])

g(t) =2
√

p q(1 − e−t/q)

− q(1 − e−(t−τb ln 2)/q)H(t − τb ln 2) , (1)

with H(x) = 0 (1) for x < 0 (> 0). The first term is the RF
power term, the second one the beam loading term. Here all
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parameters are normalized to the matched case (one with
zero reflected power during the beam) for a particular gra-
dient; the parameters gradient g (assuming on-crest oper-
ation), input power p, and loaded quality factor q are nor-
malized to their matched values. We normalize time quan-
tities to the nominal attenuation (or damping) time; these
include the time t (with t = 0 the RF turn-on time), the
beam (head) arrival time (or cavity fill time) τb ln 2, and
the beam tail arrival time (or RF pulse length) tmax. The
cavity gradient limits glim are normalized like g. In this
report we are interested in the behavior of g(t) while the
beam is in the cavity. Since Eq. 1 is monotonic during the
beam passage, either the train head or tail experiences the
maximum gradient (or the gradient is flat).

For our optimizations we randomly pick the gradient
limits of the cavities from a uniform distribution over the
interval 22–34 MV/m, which is representative of current
cavity results with production-like processing. The mean
gradient in this case is 28 MV/m. For our calculations we
take the case g = p = q = τb = 1 to correspond to the
matched case with gradient 34 MV/m. The relative gradi-
ent reduction compared to the case where every cavity is
run at its glim is δloss = 1−〈g〉/〈glim〉, where 〈〉 means to
average over the 26 cavities. We will assume that the pre-
mium is on gradient and not on RF power, so power effi-
ciency will not be optimized. We set as boundary condition
that the relative head-to-tail rms spread in energy gain (over
an RF unit) σδ ≤ 0.1%. In our calculations we take as (nor-
malized) time of the beam tail tmax = 2.5 (this is slightly
conservative: for the ILC at 28 MV/m the real number is
∼ 2.0).

The most general condition for being matched is g =
p = q = τb. Since the beam arrival time is one overall
parameter, the only way to be matched over a 26-cavity unit
is to match to the lowest glim in the distribution, in which
case the relative loss in gradient δloss ∼ 1−22/28 ≈ 20%.

Individual p’s, Individual q’s

The case of individual p and q controls, while the most
expensive, is of particular interest since a flat gradient pro-
file can be achieved in each cavity (see e.g.[3]). By taking
the derivative with respect to t of Eq. 1 (after the beam ar-
rival time) and then setting the result to zero, we find that
the condition for a flat gradient (in general, not matched) is
−2τb/q +2

√
p/q = 0. This equation has 0 (2) solutions for

q/τb whenever p/τb < (>) e ln(2)/2 ≈ 0.94 (see Fig. 1).
The gradient of the flat solutions is given by g = (−1 +

2τb/q)q and the power by p = 4τb/q−1q. We can plot
q/τb, p/τb, and relative reflected power ρr = 1 − g/p
as functions of g/τb (see Fig. 2). We see that e.g. for
p/τb = 1 the second (non-matched) solution has q/τb = 2,

WEPMS037 Proceedings of PAC07, Albuquerque, New Mexico, USA

07 Accelerator Technology Main Systems

2424

T08 RF Power Sources

1-4244-0917-9/07/$25.00 c©2007 IEEE



0.9 1 1.1

1

2

3

q/τb

p/τb

Figure 1: Parameters that yield a flat gradient along the
bunch. The point (1, 1) gives the matched case.

g/τb = 2(−1 +
√

2) ≈ 0.83, and ρr = 3 − 2
√

2 ≈ 0.17.
Note that there is a minimum g/τb = ln 2 ≈ 0.69, below
which there is no solution.
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Figure 2: The values q/τb, input power p/τb, and reflected
power ρr which yield a flat gradient, as functions of g/τb.

With individual p and q controls τb is an extra parame-
ter, and we can choose it to minimize the average reflected
power for the RF unit during the beam pulse. For our dis-
tribution of gradient limits this will occur if we choose τb

so that the corresponding matched gradient is 26.5 MV/m.
Note that, since 22/26.5 = 0.83 > ln 2, a flat solution
exists for the entire range of glim’s. In this scenario, for
each cavity, p and q are chosen from the curves in Fig. 2
with g taken as the cavity glim (only here normalized to
26.5 MV/m). The gradient loss for the RF unit is δ loss = 0,
and relative reflected power ρr ≈ 5%.

1 p, Individual q’s

In the scenario of one p and individual q’s (and, of
course, an overall τb) the implementation requires circula-
tors. To optimize the gradient for an RF unit with gradient
limits (glim)i, one, in principle, needs to solve a 27d op-
timization problem (where the 26 qi and the beam time τb

are adjustable) with one boundary condition (σ δ ≤ 0.1%).
Once the adjustable parameters are set, p is chosen to be
the highest value for which all gi(t) ≤ (glim)i for t within
the bunch train. Note that, unlike in the previous case, the

RF unit voltage gain will not be completely flat along the
bunch train (it will also, in general, not be monotonic).

Finding the global optimum of a 27d minimization prob-
lem using brute force can be quite challenging. Through
analysis, however, we can convert this problem to one of
only 3d, and we believe that the optimum for this problem
is near the optimum for the original one. The three ad-
justable parameters in the new problem are p, τb, and qmin

(to be described below). For given p and τb, the gradient g
experienced by the head and tail of the bunch train in a cav-
ity can be plotted as function of q; a typical case is shown in
Fig. 3 (the red curve gives the head, the blue curve the tail).
For a given q the maximum of these two curves—which we
will denote by ĝ(q)—gives the maximum gradient in the
cavity, since g(t) between the head and tail is monotonic.

1 2 3
0.6

0.7

0.8

0.9

1

g (glim)

head bunch

q

tail bunch

Figure 3: 1-p, individual q’s: For one seed, where opti-
mized p = 0.92 and τb = 0.885: gradient g vs. q for the
head (red) and tail (blue) bunch in the train. Also plotted
are (glim)i vs. optimized qi for the 26 cavities (plotting
symbols). For this seed δloss = 2.8%.

Now let us consider a 26-cavity distribution of gradi-
ent limits, (glim)i. Our prescription for choosing the q i

is: if (glim)i < ĝ(qmin) we choose it so that the point
(qi,(glim)i) is on the curve ĝ(q) (the monotonically de-
creasing part); otherwise we take qi = qmin. The parame-
ter qmin specifies a minimum for q; it was chosen as a de-
gree of freedom because for low q the head-tail difference
in gradient can become large. For given p, τb, and the qi’s,
we can obtain δloss and σδ . Thus we can minimize δloss,
with the boundary condition σδ < 0.1%, by adjusting p,
τb, and qmin and following the above prescription.

Fig. 3 gives an optimized example. The gradient limits
of the cavities were randomly generated from our uniform
distribution. The plotting symbols give the (q i,(glim)i) fol-
lowing our prescription. Note that for the total head-to-tail
variation in energy gain to be small, points must lie both be-
tween and outside the two flat-gradient points of the curves
(where the two curves cross; the tail gradient being larger
in some cavities must be canceled by it being smaller in
others). The method works well, and only a few points
have qi = qmin (for which cavities, neither the head nor
the tail of the train sees the limiting gradient). For this seed
δloss = 2.8% and σδ = 0.04%. Note that this 1-p, individ-
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ual q’s method tends to work less well if many of the g lim

are at the two extremes of the distribution.
For 100 ensembles (seeds) of 26 cavities we have per-

formed this 3d minimization of δ loss, with boundary con-
dition σδ < 0.1%. A histogram of δloss of the results is
shown in Fig. 4. We find that δloss = 2.7±0.4% (average±
rms deviation); the minimum is 1.6%, the maximum 3.9%.
The variation σδ follows a rather uniform distribution up to
0.1%. The optimized τb = 0.885±0.003, p = 0.91±0.02.
The relative reflected power ρr ≈ 1 − 〈g〉/〈p〉 ≈ 10%.
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Figure 4: For optimized cases with 1 p and individual q’s:
histogram of δloss for 100 ensembles of 26 cavities.

Other Scenarios

In scenarios where the q’s are adjusted in pairs, circula-
tors are not needed; the cost, however, is loss in gradient.
The gradient of these scenarios can be improved, however,
by sorting the cavities, i.e. organizing cavities with similar
glim into pairs. There is uncertainty, however, how stable
these limits are: will they be affected by the installation
process? will they remain stable over time?

In the case 1-p, q’s in pairs the optimization is similar to
the previous case. The difference, however, is that, for each
pair, only the one with lower glim determines the q for the
pair; i.e. in the g vs. q plot one point of each pair is on the
curve ĝ(q) while the other point is above it (see Fig. 5). For
100 ensembles of RF units the loss is δloss = 8.8±1.3%. If
we sort, however, the loss decreases to δloss = 3.3± 0.5%.
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Figure 5: 1-p, q’s in pairs: For the same (glim)i as Fig. 3,
where now optimized p = 0.88 and τb = 0.855: gradient
g vs. q for the head (red) and tail (blue) bunch in the train.
Also plotted are (glim)i vs. optimized qi for the 26 cavities
(plotting symbols). For this seed 8%.

With variable power tap-offs the p’s of cavities are ad-
justable in pairs. In the case p’s in pairs, q’s in pairs, vari-
able tap-offs are needed but circulators are not. This case
was optimized with brute force beginning with the flat solu-
tion tuned to the lesser glim of each pair. The final solution
turned out to be not very different from the initial solution
(though it is difficult to know if it is, indeed, the global min-
imum). We find that, without sorting, δloss = 7.2 ± 1.4%;
with sorting, δloss = 0.8 ± 0.2%.

To complete the picture we studied finally p’s in pairs,
individual q’s, a scenario that requires variable tap-offs and
circulators. This configuration was optimized with brute
force, beginning with the 1-p, individual q’s solution as a
first guess. We found not much improvement over the ini-
tial state: δloss = 2.5 ± 0.4%. With sorted cavities, how-
ever, we obtain δloss = 0.8 ± 0.2% (the same as the p’s in
pairs, q’s in pairs case with sorted cavities). A summary of
all our results is given in Table 1.

Table 1: Optimized gradient loss, δloss, in percent for var-
ious scenarios of p’s and q’s, where the overall beam time
parameter τb is also adjusted. For 100 ensembles of 26 cav-
ities, given are the average result and the rms deviation (the
number after the ± sign).

Case Not Sorted Sorted
Individual p’s and q’s 0.0 0.0
p’s in pairs, individual q’s
(VTO’s and circulators) 2.5 ± 0.4 0.8 ± 0.2
1 p, individual q’s (needs
circulators) 2.7 ± 0.4 2.7 ± 0.4
p’s in pairs, q’s in pairs
(needs VTO’s) 7.2 ± 1.4 0.8 ± 0.2
1 p, q’s in pairs 8.8 ± 1.3 3.3 ± 0.5
gi set to lowest (glim)i 19.8 ± 2.0 19.8 ± 2.0

DISCUSSION

For the current distribution of gradient limits in the RF
cavities of the ILC linacs we have optimized the overall
gradient of a 26 cavity RF unit, assuming the availability
of various combinations of circulators and variable power
tap-offs. This has been a theoretical study. Besides the
question of cost, the realizability of these solutions needs
to be considered carefully. To name one example: Our so-
lutions have q’s varying by more than a factor of two. The
question is, with the higher q’s can the cavity frequencies
still be kept sufficiently well regulated? After such con-
siderations more iterations of a study such as this no doubt
will be needed.
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