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Abstract

The more beam is cooled, the less stable it is. In the 3.3
km Recycler Ring, stacked 8 GeV antiprotons are cooled
both with stochastic (transversely) and electron (3D) cool-
ing. Since the machine is staying near the coupling res-
onance, coupled optical functions should be used for sta-
bility analysis. To stabilize beam against the resistive wall
instability, a digital damper is used. Digital dampers can
be described as linear operators with explicit time depen-
dence, and that makes a principle difference with analogous
dampers. Theoretical description of the digital dampers is
presented. Electron cooling makes possible a two-beam
instability of the cooled beam with the electron beam. Spe-
cial features of this instability are described, and the rem-
edy is discussed.

INTRODUCTION

Analysis of transverse coherent instabilities in the Recy-
cler forced us to resolve three theoretical problems, all of
them being rather general. Here these problems with our
solutions are described.

The first one relates to transverse coherent instabilities
near the coupling resonance, {νx} = {νy}. As many ma-
chines, the Recycler operates in its vicinity. As a result,
single-particle motion is coupled, and the conventional op-
tical formalism can be not valid. This problem was consid-
ered by many authors, most extensively in Refs. [1], [2],
[3]. Here, we suggest a solution, which is general and sim-
ple at the same time [4]. The leading idea is to use canon-
ical coordinates and momenta associated with the optical
eigenmodes. In this basis, beam motion gets to be uncou-
pled, and formally similar to conventional x − y uncou-
pled case. To solve the problem in this way, the wakes
(impedances) have to be properly projected on the optical
eigenvectors. As a result, the coupled problem is effec-
tively reduced to an uncoupled one, making the two prob-
lems identical - for any strength of coupling, any sort of
bunching, any wake function, any space charge, etc.

The second problem addressed here relates to digital
dampers. Due to periodical digitizing with time τ ≡ 1/fs,
digital dampers are described as linear operators with ex-
plicit time dependence. Thus, a single frequency f at the
entrance is transformed to an array of frequencies at the
exit f +nfs, n = 0,±1,±2, .... As a result, coasting beam
eigenmodes are linear superpositions of these combined
frequencies, which is significant for high-frequency pertur-
bations, f ≥ fs/4. Implementation of a digital damper
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in the Recycler [5] allowed to increase longitudinal phase
space density several times, see more in Ref. [6].

The last problem discussed here relates to a possibility
of coherent transverse two-beam instability between the
cooled circulating antiproton beam and a cooling single-
pass electron beam. This instability is discussed since early
90’s [8], [9], but its understanding was not sufficient. Some
observations rose a question about a possibility of this in-
stability at the Recycler [10].

Since velocities of the two beams are identical, their in-
teraction is local. Another important feature of this inter-
action is its skew character due to the magnetic field in the
cooler. As a result, without x − y coupling of antiproton
optical modes, electron feedback to antiproton oscillations
is insensible for antiprotons. In more details this issue is
discussed in [11].

TRANSVERSE COUPLING:
SUBSTITUTION RULES

For arbitrary coupling, the beam optics can be described
in terms of 4D eigenvectors. Hereafter, a parametriza-
tion suggested in [12] is used, where the 4 eigenvectors
V1, V−1 ≡ V∗

1, V2, V−2 ≡ V∗
2 of a revolution matrix

R are presented as follows:

V1 =

(√
β1x ,− i(1 − u) + α1x√

β1x
,
√
β1ye

iν1 ,− iu+ α1y√
β1y

eiν1

)

V2 =

(√
β2xe

iν2 ,− iu+ α2x√
β2x

eiν2 ,
√
β2y ,− i(1 − u) + α2y√

β2y

)
(1)

with R · Vm = exp(−iμm)Vm. Components of
the 4D vectors are transverse coordinates and angles,
(x, θx, y, θy); in case of non-zero longitudinal magnetic
field, the angles are modified according to a conventional
rule for the canonical momenta. Eigenvector parameters
β1x, β2y, etc. are determined by the machine optics. The
symplecticity requires then a specific orthogonality

V+
m·U ·Vn = −2iδmnsgn(m) ; (2)

where a superscript + means Hermite-conjugation, δmn is
the Kronecker symbol, sgn(m) is the sign function, and U
is the symplectic unit matrix. This formalism is a develop-
ment of Ripken-Mais presentation [13], and is closely re-
lated to the Edwards-Teng parametrization [14], [12]. Any
vector X in the 4D phase space can be expanded over the
eigenvectors:

X =
∑

n

CnVn ; Cn =
i

2
V+

n · U · X .
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An elementary act of two-particle interaction can be con-
sidered in terms of the eigenmodes. Following [15], the el-
ementary kick for angles of the trailing particle (Δθx,Δθy)
is expressed as

Δθx = −e2xWx/(p0v0); Δθy = −e2yWy/(p0v0).

Here e is the particle charge, p0 and v0 are a longitudi-
nal velocity and momentum in the laboratory frame, x and
y are the offsets, and Wx,y are the wake functions. In
terms of the 4D vector X this can be expressed as a per-
turbation ΔX = W ·X with the wake matrix elements
W2,1 = −e2Wx/(p0v0), W4,3 = −e2Wy/(p0v0) , and
zeros for all other matrix elements. In terms of the com-
plex amplitudes Cn, this kick is expressed as

ΔCn =
i

2
V+

n · U·ΔX ≡ i

2

∑
m

GnmCm . (3)

The kick matrix G is not diagonal generally; so, when the
mode m is originally excited, the wake drives other modes
n �= m as well. However, when the wake is small enough,
it can be treated as a small perturbation of the coherent
eigenmode amplitudes. In this case, in the first order of
the perturbation theory, only diagonal elements of the per-
turbation count, similar to the Quantum Mechanics (see in
more details [11]). The wake mixing can be considered
sufficiently small when the tune separation of the two trans-
verse modes is much larger than the wake-driven coherent
tune shift:

|ν1 − ν2| � Δνcoh . (4)

In reality, this condition is typically satisfied. If it is not,
non-diagonal elements of the kick matrix G have to be
taken into account as well, leading to some modification
of results. Below, the condition (4) is assumed satisfied,
so the perturbation formalism is valid. Thus, only diago-
nal matrix elements Gnn ≡ Gn in Eq. (3) count; they are
calculated as follows:

Gn = − e2

p0v0
(Wxβnx +Wyβny) ; (n = 1, 2). (5)

This result already shows how the wake is projected on the
eigenmodes. However, one more step may be useful for un-
derstanding. The complex amplitudes Cn can be presented
with explicitly written real and imaginary parts as

Cn =
qn
2

+ i
pn

2
; (n = 1, 2). (6)

It is straightforward to show that a linear phase space trans-
formation from the original variables (x, θx, y, θy) to the
new variables (q1, p1, q2, p2) is canonical, since they are
related to each other by a symplectic matrix, composed
from real and imaginary parts of the eigenvectors V (see
Ref. [12]). Thus, q1, q2 are new canonical coordinates, and
p1, p2 are the corresponding canonical momenta. It follows
then, that a single excited mode gets the wake-driven kick

with

Δqn = 0 ; (7)

Δpn = Gnqn = − e2

p0v0
(Wxβnx +Wyβny)qn .

Equations (7) show how canonical momentum is perturbed
by a small localized wake. Having that, the Vlasov equa-
tion with all its results in the phase space (q1, p1) are ex-
actly identical to the uncoupled case (x, θx), with the fol-
lowing substitution rules for the tune νx = μx/(2π) , wake
times beta-function Wxβx, and, thus, impedance times
beta-function Zxβx:

νx → ν1 ;
Wxβx → Wxβ1x +Wyβ1y ; (8)

Zxβx → Zxβ1x + Zyβ1y .

Note that these rules work both for coasting and bunched
beam, and do not depend on a shape of the longitudinal
potential well. Any solution of the Vlasov equation for
an uncoupled beam can be immediately re-written to the
coupled case with these simple rules. After that, the result
looks formally similar, while its practical consequences are
generally different because of two reasons. First, the in-
coherent betatron spectrum is changed by the coupling,
νx → ν1; thus, the Landau damping is changed. This
point is missed in Refs. [2], [3], where denominators of
dispersion integrals are based on the uncoupled incoherent
tunes. And second, an amplitude of the coherent shift ∝
Zxβ1x+Zyβ1y is a function of coupling as well. The wake
substitution rule (8) is valid both for conventional driving
(or dipole) wake, and for the detuning (quadrupole) wake
(about the two wakes see e. g. Ref. [16]).

The substitution rules (8) show disagreement both with
results of Ref. [1], and Refs. [2], [3].

A head-tail growth rate α was derived in Ref. [1] for
a coupled optics within a two-particle model, and the two
rates were found to be identical. In a simplified form, cited
in Ref. [17], the rate looks as

α ∝ ν′xWx + ν′yWy ,

where ν ′x, ν
′
y are the chromaticities far from the coupling

resonance. Applied for the same problem, the substitution
rules (8) lead to

αn ∝ ν′n(βnxWx + βnyWy)

Clearly, the two results are significantly different. They
may become identical only if accidentally ν ′

x/ν
′
y =

βnx/βny both for n = 1 and n = 2. Generally, this condi-
tion cannot be correct: the left-hand side is determined by
sextupoles, while the right hand side is given by coupled
linear optics.

There are two significant disagreements between the
rules (8) and Refs. [2], [3]. According to these papers, a
localized skew-quad entangles coasting beam modes with
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different longitudinal numbers. We cannot agree with
that. Indeed, localization of skew quads, as well as normal
quads, still preserves the longitudinal wave number, since
the growth time is much longer than the revolution time.
When the Vlasov equation is averaged over fast variables,
resulting equations on the slow growing coherent ampli-
tudes become homogeneous over the ring, so the longitudi-
nal Fourier harmonics are true eigenmodes of the coasting
beam. The second disagreement between (8) and Refs. [2],
[3] is that denominators in dispersive integrals (e. g. Eq.
(7) of Ref. [2]) are uncoupled, which excludes correct cal-
culation of Landau damping from those equations.

DIGITAL DAMPER

When the space charge tune shift is high compared with
the coherent tune shift, Δωsc � |ΔωZ |, the stability
threshold is almost independent on the impedance [6]. The
stability condition can be approximately presented as

|ηn− ξ|δp/p ≥ Δνsc/xth , (9)

where η, n, ξ are a slippage factor, harmonic number,
and chromaticity; xth is a numerical factor, xth 
 3 − 5
depending (logarithmically) on the space charge over the
impedance tune shifts ratio, and reflecting the particle dis-
tribution over the momentum; Δνsc = Δωsc/ω0. By the
same reason, the stability condition is not sensitive to the
bunching factor, when the impedance is space-charge dom-
inated, Δωsc � |ΔωZ |. The stability condition can also be
presented in terms of a threshold frequency f th ≡ nth/T0

:

f ≥ fth ≡ |ξth| − |ξ|
|η|T0

, (10)

where the threshold chromaticity ξth is

ξth =
Nr0

4πxthγε⊥
mc2T0

ε‖
, (11)

with ε‖ = cδpT0 as the longitudinal r. m. s. emittance,
When the chromaticity module is higher than the thresh-
old, fth < 0,the beam is stable for any frequency (mode
number). If the chromaticity cannot be elevated as high,
the beam is going to be unstable at harmonics below the
threshold frequency.

When the synchrotron frequencies are small compared
with the coherent tune shift, they can be neglected in the
stability analysis. For the Recycler, the synchrotron periods
are at the range of 1 second, while the instability growth
time is typically at least an order of magnitude shorter. In
this case, the tail of the bunch can act back on the head
through the multi-turn resistive wake. However, for the
space charge dominated impedance, the stability threshold
is barely dependent on the wake value.

To suppress unstable modes, f ≥ fth 
 10 − 100MHz,
transverse digital damper is implemented [5]. That choice
is determined by required one-turn delay, which would

make analog damper too expensive. An analog-digital con-
verter (ADC) is a specific part of the digital damper, mak-
ing its interaction with the beam different from a case of
analog dampers.

The output signal of the analog-digital converter (ADC)
goes with a sample frequency fs ≡ ωs/(2π) ≡ τ−1

s , at the
time of writing this statement fs = 53 MHz, being exactly
588 harmonic of the revolution frequency (to filter out all
the revolution harmonics). Presently, the input signal is
digitized at Na = 4 times higher frequency, and then an
average of these Na numbers goes as the output.

The ADC transforms any input frequency into a se-
quence of all the alias frequencies, shifted from the input
one by multiples of the sample frequency. This equidis-
tant sequence of frequencies includes a single one inside
an interval 0 < ω < ωs, which can be taken as a pa-
rameter of the entire set of the cross-talking frequencies.
This continuous parameter ω is referred below as a mark-
ing frequency. Incoming frequencies ωp ≡ ω + pωs , p =
0, ± 1, ± 2, ...are transformed by the ADC into outgoing
frequencies ωq ≡ ω+ qωs , q = 0, ±1, ±2, .... Let T̂ be
the linear operator of the ADC; then, it is straightforward
to show that

T̂ exp (−iωpt) =
∞∑

q=−∞
Tpq exp (−iωqt) ; (12)

Tpq =
2
Na

exp
[
iωpτs

(
1 − 1

2Na

)]
sin2 (ωpτs/2)

τsωq sin
(

ωpτs

2Na

) .

(13)
Below, it is assumed that the phase factor in the ADC is
compensated by a preceding delay line, providing all the
matrix elements real:

Tpq =
2
Na

sin2 (ωpτs/2)

τsωq sin
(

ωpτs

2Na

) . (14)

With the ADC, the frequency ω (representing actually the
wave length of the beam perturbation) is no longer a good
parameter for the beam modes, each consisting of all the
composite harmonics. High enough harmonics are strongly
damped by Landau damping (and possibly a low-pass fil-
ter); thus, they can be neglected and the infinite set of the
composite amplitudes being cut.

Let Ap be an amplitude of the harmonic ωp = ω + pωs.
Were the digital damper the only way for the beam to inter-
act with itself, the time evolution of this harmonic would
be described as

dAp

dt
= −Λ0

∞∑
q=−∞

TqpAq (15)

with Λ0 as a low-frequency rate, determined by the pre-
amplifier. Influence of the low-pass filter is omitted here
for simplicity, but can be easily included. A solution of
this set of linear equations is expressed in terms of eigen-
vectors, whose eigenvalues are the damping rates of the
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beam modes. Impedance and Landau damping just add
their terms to the matrix diagonal elements:

dAp

dt
= −Λ0

∞∑
q=−∞

TqpAq − (ΛL)p Ap − i (ΔωZ)pAp

(16)
Note that the matrix T̂ (14) is strongly degenerated: for
any finite dimension it is reduced, all its eigenvalues but
one are exact zeroes. With impedance, half of these zeroes
are getting unstable; they could be stabilized by the Landau
damping. For Gaussian distribution, the Landau damping
rate (ΛL)n is calculated as

ΛL =
√
π

2
Δωscxn exp(−x2

n/2) , xn ≡ Δωsc/Δωb(n),

(17)
where the chromatic frequency spread Δωb(n)/ω0 =
|ηn−ξ|δp/p. If the distribution is not Gaussian, the correc-
tion is obvious. Note that the dimensionless energy spread
xn does not change, if the beam is adiabatically bunched:
it depends on the longitudinal phase space density. In other
words, growth of the space charge tune shift with the beam
bunching is compensated by an equal growth of the mo-
mentum spread, so that the dimensionless spread xn does
not change. As a consequence, the Landau damping grows
linearly with the bunching factor.

The described analysis predicts several times increase of
the phase space density due to the digital damper. Cur-
rently, longitudinal phase space density is typically about
twice higher than its stability threshold value without the
damper.

This section is essentially based on Ref. [6]. A different
way to present this problem was suggested later in Ref. [7].
Results of the two papers are close.

TWO-BEAM INSTABILITY AT
ELECTRON COOLING

Electron cooling is a powerful tool to increase phase
space density of hadron beams. It is successfully used at the
Recycler [10], as well as at many other storage rings; the
Recycler’s beam kinetic energy is at least an order of mag-
nitude higher than anywhere else. Circulating antiprotons
are cooled because of their thermal collisions with elec-
trons of a co-moving single-pass electron beam. The same-
velocity beams share a small portion of the ring circum-
ference (20 m from 3.3 km). While individual antiproton-
electron scattering leads to cooling, a coherent interaction
of the two beams may lead to a two-beam instability. Al-
though this instability was never directly seen in the Re-
cycler, it still can be suspected to have place at high fre-
quencies or for quadrupole modes. A reason for this suspi-
cion is that there is a lifetime degradation, and sometimes
emittance growth, with increase of the antiproton density
happened either with cooling or with longitudinal squeeze.
Another possible explanation to these phenomena is an ex-
citation of a single-particle resonances by a space charge

of the cooled or squeezed antiproton bunch. A remedy
depends on the reason, so it was important to understand
if the antiproton-electron instability is responsible for the
mentioned phenomena.

Two features of the beam-beam interactions are of prin-
ciple importance. First, since the beams are moving with
the same velocities, their interaction is local. Second, since
there is a solenoidal magnetic field in the cooler, electron
transverse motion is essentially a drift. Namely, a trans-
verse offset of the ion beam causes a dipole electric field,
forcing electrons to drift in the orthogonal transverse direc-
tion. This drift gives its own electric field, acting back on
the ions. Being linear and local, this electron response can
be described as a perturbation of the ion’s revolution ma-
trix. At first order, this non-symplectic perturbation matrix
is proportional to a product of the electron and ion currents.

In the leading order, equations of motion for antiproton
(”ion”) and electron complex offsets ξi,e = xi,e + iyi,e are
reduced to the following set:

ξ′′i − k2
ieξe = 0 ; (18)

ξ′e − ikedξi = 0 .

with kie and ked as wave numbers, describing the beams in-
teraction. Here, modification of the beam-beam interaction
by the antiproton Larmor rotation is neglected. Also, the
beam-beam phase advances ψie = kiel, ψed = kedl over
the cooler length l are assumed to be small: ψie, ψed � 1.
Solution of Eqs. (18) leads to the cooler’s matrix for an-
tiproton beam, perturbed by its interaction with the elec-
trons; the perturbation is scaled by the interaction parame-
ter

α = ψ2
ieψed

proportional to both antiproton and electron currents. The
beam-beam interaction can be described by means of the
perturbed revolution matrix R, its bare value R (0) and the
perturbation P:

R ≡ R(0) + P ·R(0) ≡ (I + P) ·R(0)
, (19)

Complex shifts of the phase advances δμn ≡ μn − μ
(0)
n

then follow by means of the perturbation theory:

δμn = −1
2
V(0)+

n ·U · P ·V(0)
n , (20)

where Vn, n = 1, 2, are the optical eigenvectors (1). This
yields growth rates Λn = Im(δμn)/T0, with T0 as the rev-
olution time. In the leading order, the perturbation 4 × 4
matrix P, calculated by means of Eqs. 18, has skew struc-
ture; in terms of 2 × 2 blocks it has only anti-diagonal el-
ements of equal values and opposite signs. The skew way
of the two-beam interaction leads to a conclusion that this
two-beam instability, if reveals itself at all, has to be highly
sensitive to x − y coupling of the unperturbed antiproton
eigenmodes. Indeed, since the electron response goes in
an orthogonal direction to the original antiproton offset, a
work of the resulting force acting back on the antiproton
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beam is not zero only if the antiproton mode is not plane
[11]. Thus, in a leading order, the growth rate has to be
proportional to an antiproton coupling parameter, responsi-
ble to a degree of circularity of the antiproton optical mode.
The described sequence of calculations leads to the follow-
ing result for the growth rate:

Λc = ±ακxy

2T0
; κxy ≡

√
β1xβ1y

l
sin ν1 (21)

where κxy describes the degree of circularity of the an-
tiproton optical mode. By a general property of the Twiss
parameters

√
β1xβ1y sin ν1 =

√
β2xβ2y sin ν2 (see Ref

[12]). In a special case, when the antiproton x − y cou-
pling is driven only by the solenoidal field in the cooler,
the growth rate reduces to:

Λc = ±α βo

4T0l

1√
1 + (μx − μy)

2
/ψ2

iL

, (22)

For the Recycler, assuming 300 · 1010 antiprotons, evenly
distributed over 50% of the circumference, and cooled with
0.5 A electron beam of 3 mm radius inside of a 20 m
long cooler with 100 G field, taking the coupling param-
eter κxy = 0.3 (until recently, the working point was lo-
cated at the coupling resonance), the rate is calculated as
Λ−1

c = 1 s. For more bunching, this value grows as the
local density; thus, it could easily be 10-20 times higher
while compressed bunches are prepared for extraction.

Up to this point, a dipole beam-beam instability was dis-
cussed. However, the quadrupole instability can be excited
as well, or even more likely [11]. Due to the same reason,
the quadrupole instability has to be as much sensitive to the
antiproton x− y coupling, as the dipole.

Until not long ago, the Recycler stayed just at the cou-
pling resonance. At that working point, an emittance
growth and a lifetime degradation were observed, both as-
sociated with the antiproton peak current. Recent experi-
mental studies indicate that while these phenomena depend
on the tune position along the coupling resonance line, they
are insensitive to the tune separation [10]. Based on these
observations and results of the outlined model, the coherent
antiproton-electron interaction can be excluded as a main
reason for these antiproton intensity phenomena in the Re-
cycler. Thus, excitation of single-particle resonances by a
space charge of the cooled or squeezed antiproton bunch
is singled out as an only remaining conjecture. In general,
checking the influence of the horizontal-vertical coupling
resonance appears to be a critical test to verify whether the
coherent ion-electron instability causes lifetime degrada-
tion in a ring with electron cooling. Avoiding coupling res-
onances should be considered as a remedy against the in-
stability, since horizontal-vertical coupling is its necessary
(but not sufficient) condition.

SUMMARY

Three separated theoretical problems are presented here;
they were encountered in stability analysis of the antiproton

beam in the Recycler.
First, a method to treat x − y coupling for analysis of

beam transverse coherent oscillations is described. The
method effectively reduces a coupled problem to an un-
coupled one, making the two problems identical. Another
problem outlined here relates to use of a digital damper
for stabilization of beam coherent motion. Digital dampers
are described by explicit time-dependent linear operators,
so they do not preserve a frequency of the signal. Modi-
fication of the stability analysis with the digital damper is
described. A third problem relates to two-beam coherent
instability in electron cooling. The most important con-
clusion is extreme sensitivity of this instability to x − y
coupling of the antiproton optical modes. More precisely,
it is sensitive to a degree of circularity of these modes. Al-
though the problems were driven by specific conditions at
Recycler, their solutions are general.
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