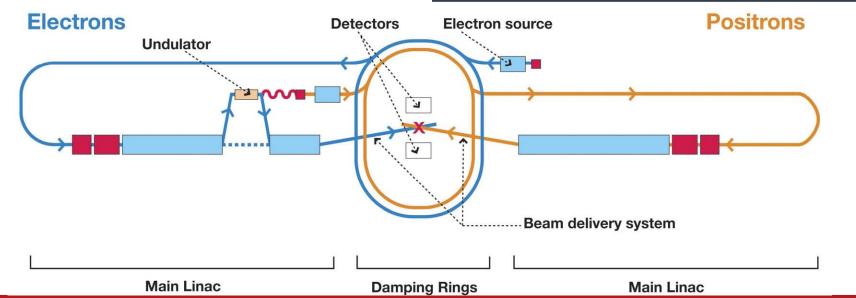
Plans for Utilizing CESR as a Test Accelerator for ILC Damping Rings R&D

Mark Palmer

Cornell Laboratory for

Accelerator-Based Sciences and Education


Outline

- ILC Damping Rings R&D Priorities for the Engineering Design Report
- CESR as a Vehicle for Damping Rings R&D
 - CESR Availability
 - CesrTA Concept and Goals
 - CESR ⇒ CesrTA Conversion
 - CesrTA Parameters
 - ILC Research at CESR Ongoing and Planned
- Conclusion

ILC Damping Rings

- Reference Design Report 2007
 - Central damping ring complex
 - Single positron damping ring
 - For an ~6 km ring, electron cloud mitigation is a serious issue
- Engineering Design Phase
 - Engineering Design Report ⇒ 2010
 - Damping Rings R&D required as well as engineering design work

Beam energy	5 GeV	
Circumference	6695 m	
RF frequency	650 MHz	
Harmonic number	14516	
Injected (normalised) positron	0.01 m	
emittance		
Extracted (normalised) emittance	8 µm × 20 nm	
Extracted energy spread	<0.15%	
Average current	400 mA	
Maximum particles per bunch	2×10^{10}	
Bunch length (rms)	9 mm	
Minimum bunch separation	3.08 ns	

ILC Damping Rings R&D Task Force Very High Priorities

- Lattice design for baseline positron ring
- Lattice design for baseline electron ring
- Demonstrate < 2 pm vertical emittance
- Characterize single bunch impedance-driven instabilities
- Characterize electron cloud build-up
- Develop electron cloud suppression techniques
- Develop modelling tools for electron cloud instabilities
- Determine electron cloud instability thresholds
- Characterize ion effects
- Specify techniques for suppressing ion effects
- Develop a fast high-power pulser

CesrTA Concept and Goals

CESR

- Nearly 3 decades of colliding beam physics at Wilson Laboratory will conclude on March 31, 2008
- It may be possible after the conclusion of HEP to carry out a program of ILC damping rings R&D ⇒ CesrTA

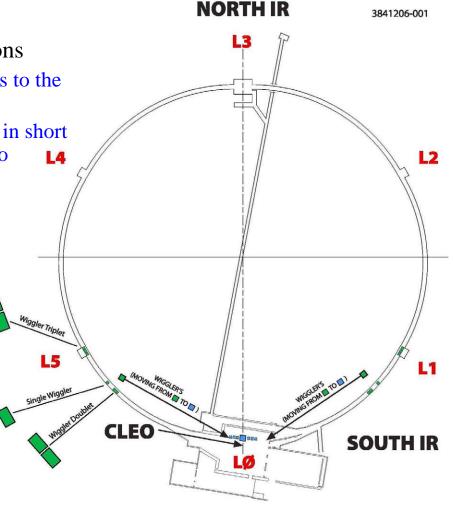

CesrTA Goals:

- Support critical damping rings R&D on a timescale compatible with EDR completion in 2010
- Provide sufficient amounts of dedicated running time to facilitate key damping ring experiments
- Provide an R&D program complementary to work going on elsewhere (eg, at KEK-ATF)

Unique Features of CesrTA

• Offers:

- An operating wiggler-dominated storage ring
- R&D with the CESR-c damping wigglers
 - Baseline technology choice for the ILC DR
 - High-field, large-aperture wigglers with exceptional field quality
- Flexible operation with positrons and electrons in the same ring
- Flexible energy range
 - 1.5 GeV 5.5 GeV
- Dedicated experimental runs for ILC R&D starting in 2008

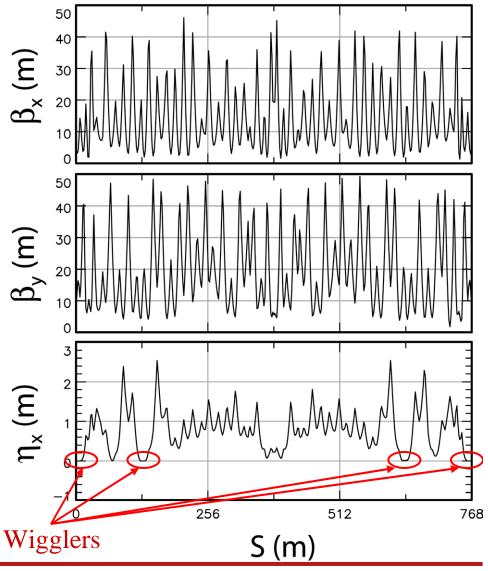

CesrTA Experimental Reach

- A number of *High* and *Very High* priority R&D items, as specified by the damping rings R&D task force, can be addressed with CesrTA
 - Electron Cloud (EC) for the Positron DR
 - Study cloud growth in quadrupoles, dipoles, and wigglers
 - Study cloud suppression in quadrupoles, dipoles, and wigglers
 - Study instability thresholds and emittance growth
 - The decision to employ a single positron damping ring has increased the significance of these issues
 - Ion Effects for the Electron DR
 - Study instability thresholds and emittance growth with ILC-like trains
 - Evaluate suppression methods
 - Ultra Low Emittance Operation
 - Evaluate:
 - Alignment and survey issues
 - Beam-based alignment techniques
 - Optics correction techniques
 - Ultra low emittance measurement and tuning
 - Demonstrate ultra low emittance operation with positron beams
 - System and Component Testing
 - For example: ILC prototype wiggler, injection/extraction kickers, etc

CESR ⇒ CesrTA Conversion

Proposed CESR modifications:

- Place all wigglers in zero dispersion regions
 - 6 wigglers must move from the CESR arcs to the L0 interaction straight
 - Remaining 6 wigglers are already located in short straights which can be configured for zero dispersion
- Eliminate the CLEO IR optics
- Modify the vacuum system...
 - For wiggler move
 - For EC growth diagnostics
 - For EC suppression in selected chambers
 - For flexible installation of test devices
- Upgrade instrumentation to...
 - Achieve and measure ultra low emittance beams
 - Characterize dynamics of ILC-like bunch trains
- Upgrade feedback system for 4 ns bunch train operation

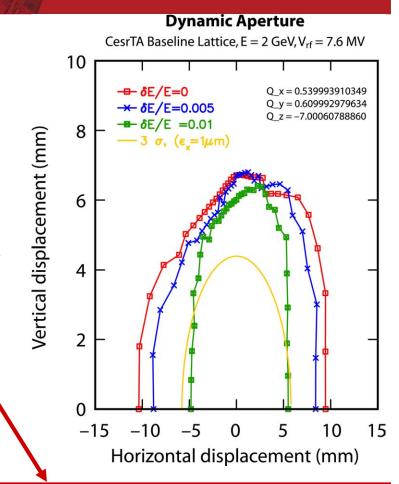


CesrTA Parameters

Baseline Lattice

Parameter	Value
Е	2.0 GeV
$N_{ m wiggler}$	12
B _{max}	1.9 T
ε_{x} (geometric)	2.3 nm
ε_{v} (geometric) Target	5–10 pm
$\tau_{\mathrm{x,y}}$	56 ms
$\sigma_{\rm E}/{\rm E}$	8.1×10^{-4}
Q_{x}	14.54
Q_{v}	9.61
Q_z	0.070
Total RF Voltage	7.6 MV
$\sigma_{\rm z}$	8.9 mm
$\alpha_{\rm p}$	6.2×10^{-3}
$ au_{ ext{Touschek}}$	>10 minutes
Bunch Spacing	4 ns

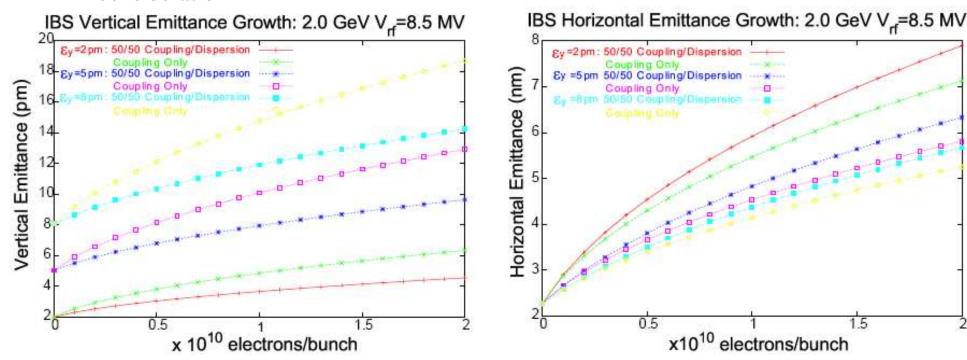
CesrTA Baseline Lattice, E = 2 GeV



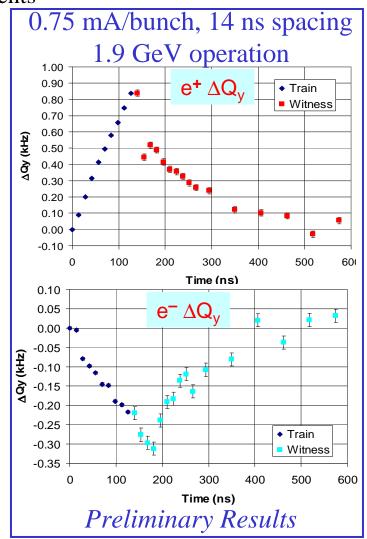
Lattice Evaluation

Dynamic aperture

- 1 damping time
- Injected beam fully coupled
 - $\varepsilon_{\rm x} = 1 \, \mu {\rm m}$
 - $\varepsilon_{\rm v} = 500 \ \rm nm$
- Have explored alignment sensitivity and low emittance correction algorithms for various assumptions ⇒ results consistent with achieving our vertical emittance target of 5–10 pm


Element Misalignment	Nominal	Worst Case
Quad/Bend/Wiggler Offset	150 μm	300 μm
Sextupole Offset	$300 \mu m$	600 µm
Rotation (all elements)	1 mrad	2 mrad
Quad Focusing	4 x 10 ⁻⁴	4 x 10 ⁻⁴
Beam Position Monitor Error	'S	
Absolute (orbit error)	10 μm	50 μm
Relative (dispersion error)	$2 \mu m$	10 μm
Rotation	1 mrad	2mrad

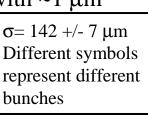
Vertical Emittance			
Alignment/BPM Errors	Mean	95% C.L.	
Nominal	2.0 pm	4.7 pm	
Worst Case	6.5 pm	11.3 pm	

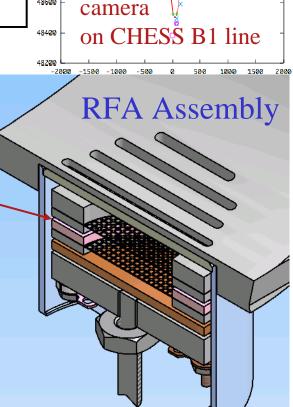

IBS Evaluation (2 GeV Lattice)

- Transverse emittance growth for different contributions of coupling and dispersion to the vertical emittance
 - Baseline lattice
 - Compare different corrected optics assumptions
 - ~9 mm bunch length
- IBS effects will be significant
 - Energy flexibility of CESR and γ^4 IBS dependence offers a flexible way to study, control and understand IBS contributions to emittance relative to other physics under consideration

Ongoing R&D Using CESR

- Multi-bunch turn-by-turn instrumentation has been commissioned in CESR
 - Beam position and vertical beam profile measurements
 - See posters THPAN087 and FRPM047 for beam profile measurement details
- Example: Witness Bunch Studies
 - Initial train of 10 bunches to generate EC
 - Witness bunches placed at varying distances behind train
 - Vertical tune shift for both beams consistent with presence of EC (observed horizontal tune shifts are much smaller in magnitude)
 - Positron tune shift: 1 kHz ⇒ Δv =0.0026 ρ_e ~ 1.5 x 10¹¹ m⁻³ (model of Ohmi, et al., APAC01, p. 445)
 - Electron tune shift
 - Magnitude of shift along train is ~1/4th of shift for positron beam
 - NOTE: Shift continues to grow for 1st 4 witness bunches!


Preparation for CesrTA


49000

48800

Pinhole

- Transverse feedback recently upgraded for 4 ns operation
- Work on fast x-ray beam profile monitor
 - Fast GaAs diode arrays (<50 ps rise- and fall-time) -
 - Targeting a multi-bunch turn-by-turn detector with ~1 μm resolution
- Preparatory machine studies program
 - Electron cloud and fast ion studies
 - Start exploration of low emittance operations
 - CESR-c (existing machine layout) optics have been designed: $\varepsilon_x \sim 6.5$ nm
 - Early work on beam-based alignment
- First Retarding Field Analyzers (RFA) based on an APS design installed in L3 straight
- Development work for wiggler vacuum chambers
 - Collaboration: LBNL, SLAC
 - EC collector design underway (prototype this summer)
 - Will test various EC mitigation techniques
- General infrastructure preparation
 - Feedback
 - Vacuum
 - Other...

1st 5.3 GeV Measurement

CesrTA Experimental Program

Schedule:

- Primary conversion down in mid-2008
- 2 CesrTA experimental runs scheduled for 2008
- 2009 onwards:
 - 3 CesrTA experimental runs/yr totaling ~1/3rd of each year
 - 3 High Energy Synchrotron Source (CHESS) runs/yr totaling ~1/3rd of each year
 - Remainder of year scheduled as down and commissioning time for hardware installation and experimental setup
 - Provides flexible scheduling of experiments for collaborators

• Experimental Focus Recap:

- EC Growth and Mitigation Studies particularly in the damping wigglers
 - Bunch trains similar to those in the ILC DR
- Ultra Low Emittance Operation
 - Validation of correction algorithms
 - Measuring, tuning for, and maintaining ultra low emittance
- Beam Dynamics Studies
 - Detailed inter-species comparisons (distinguish EC, ion and wake field effects)
 - Characterize emittance growth in ultra low emittance beams (EC, ion effects, IBS,...)
 - Demonstrate ultra low emittance operation with a positron beam
- Test and Demonstrate Key Damping Ring Technologies
 - Wiggler vacuum chambers, optimized ILC wiggler, diagnostics, ...

Conclusions & Acknowledgments

- CesrTA conceptual design work is ongoing
 - Program offers unique features for critical ILC damping ring R&D
 - Simulations indicate that the emittance reach is suitable for a range of damping ring beam dynamics studies
 - The experimental schedule will allow timely results for ILC damping ring R&D!

Co-Authors

J. AlexanderM. Ehrlichman

– D. Hartill

R. Helms

- D. Rice

D. Rubin

- D. Sagan

L. Schächter

- J. Shanks

- M. Tigner

– J. Urban

CESR Machine Studies and General Support

- M. Billing

- S. Chapman

R. Holtzapple (Alfred Univ.)

- G. Codner

J. Crittenden

J. Kern (Alfred Univ.)

- G. Dugan

- R. Meller

B. Cerio (Alfred Univ.)

J. Sikora

E. Tanke

• Visitors for EC Studies:

– J. Flanagan (KEK), K. Harkay (APS), A. Molvik (LLNL), M. Pivi (SLAC)