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• A new type of compact induction accelerator promises
to increase accelerating gradients by at least an order
of magnitude over that of existing machines

• The accelerator is based on the use of high gradient
vacuum insulators, advanced dielectric materials and
switches and grew out of work to develop a compact
flash x-ray radiography source

• Research describing an extreme variant of this
technology aimed at proton therapy for cancer will be
presented

New pulsed power technology
for high current accelerators
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• Dielectric Wall Accelerator (DWA) for flash x-ray

radiography

• Critical technologies for the DWA

– High gradient insulator technology

– Blumlein development

– Solid-state switch development

– Dielectric materials

• Proton therapy concept

• Summary

Outline
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DWA technology originated with a desire

for more compact flash x-ray sources

accelerator
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DARHT-1, 18

MeV, 2 kA

FXR, 18 MeV,

2 kA

20 MeV, 2 kA DWA

• existing LIA

sources have

gradients < 0.5

MV/m
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Dielectric Wall Accelerator (DWA)

incorporates pulse forming lines into a high

gradient cell with an insulating wall

 

State of the Art Electron

Induction Accelerator

≈ 0.3 - 0.5 MV/meter Gradient

E-field in gaps only

≈ 1 meter

High

gradient
insulator
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(beam)

* Patent Pending
Novel Zero Integral Pulse (ZIP)

Forming Line with potential for

> 10 MV/m*
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Important elements for

the DWA

• High gradient insulators

• PFL architecture

• Switches

• Large size dielectrics with

high dielectric constant and

high bulk breakdown strength



Closely spaced conductors inhibit the breakdown process

High gradient insulators (HGIs) perform 2

- 5 x better than conventional insulators*

Kapton

High Gradient Insulators

Conventional Insulators

HGI structure forms

a periodic

electrostatic

focusing system for

low energy electrons

Leopold, et. al., IEEE

Trans. Diel. and Elec.

Ins. 12, (3) pg. 530

(2005)
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* U. S. Patent No. 6,331,194
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HGIs have withstood extreme

conditions

Insulator Test Cell
Beam Dump

ETA-II Beamline

• On ETA-II (5.3 MeV, 2
kA, 50 ns pulses)

• 17 MV/m insulator
gradient

• Beam dump in vicinity
of insulator

• Line of sight to beam

3 mm
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Oil switch/Polypropylene Blumlein has
achieved 100 MV/m stress in
transmission lines for 5 ns pulses
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Blumlein

Entire assembly immersed in oil

under vacuum

Blumlein section Matched output line

Charge/switching monitor
Output monitor

Switch gap

L
o

a
d

thin polypropylene sheets
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SiC photoconductive switches
offer unique advantages*
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c - plane
Crystal

a - plane
Crystal

xOmicropipe

micropipe

t w

t w
SiC

Conduction RegionWasted
Optical 
Energy

Optical
Energy

Injection

Optical
Energy

Injection

Spatial Optical Energy Absorption

SiC offers the possibility of

high voltage, high current

operation at elevated

temperature with long

lifetime and low jitter *Patent pending
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• SiC photoconductive switch that closes AND
opens promptly has been demonstrated at 27.5
MV/m gradient

SiC switch demonstrates
fast operation*
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* Patent pending
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Beyond 27 MV/m, field
enhancements must be managed
at triple junction interface
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* Patents pending

Large enhancements are present at

electrode interface

Electrode

SiC

Failure

Electrode

Modified electrode geometries are

being pursued for increased gradients*
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Epoxy Buried Ball Electrodes (average 

gap=.0287mm )
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Epoxy Buried Ball Electrodes (average

gap = 0.287 mm)

A new castable dielectric is one of

the possible materials for a DWA*
accelerator

Cast dielectric has high bulk breakdown strength > 400 MV/m (small

samples) and can have epsilons from ≈ 3 up to ≈ 50 for transmission lines

Nominal Gap 

= 11 mils Polished 
Steel Ball

Polished 
Steel Ball

Cast Composite
Dielectric

Breakdown Strength = V/gap
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* Patent pending

1.2 meter cast
line (εr=10)
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Embedded electrodes can

withstand 100 MV/m accelerator
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“Thin” conductor (0.762 mm)

Dielectric

• System gradient > 100 MV/m

(counting electrode thickness)

• Performance for a thinner (SiC)

configuration should be better2.5 mm
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Novel ZIP line stack will form the

heart of a high gradient cell
accelerator
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Oil Spark-gap SwitchesOutput Monitor

Duroid stack used for initial tests • 4 ZIP lines (300 kV

each)
• RT Duroid εr=10 (1st

stack < 200 kV each)
• cast dielectric εr=10

(2nd stack for cell)

• oil switches

• 25 ns pulsewidth

• 1.2 meters long

• 0.2 meters high

• 0.1 meters wide

• 1.2 MV total, 10 kA into

a matched load (power

delivered to a matched

load = 12 GW, energy

delivered = 300 J)
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All four Duroid ZIP lines are switching

within the required interval accelerator
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Stack of 4 cast ZIP lines will be

used for beam tests on ETA-II
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CAD Image of 1.2 MV cell for ETA-II Testing

Beam load will be 2 kA

• First cast dielectric ZIP
line (εr = 10), 25 ns pulse

• Design charge voltage =

300 kV

• Passed qualification test

at 165 kV charge
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Cast dielectric opens up new

possibilities for cell architectures*
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* Patents pending

Constant impedance radial ZIP line
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We have been investigating the potential

application of the DWA to cancer therapy
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• Bragg peak minimizes damage to
normal tissue

– Requires 70 - 250 MeV at ! ten
nanoamperes average current

• Current space requirements preclude
use in most hospital facilities; large
capital investment required

X-ray treatment

machines fit in a single

room - this is our goal

for a compact proton

machine

Shizuoka Proton Center, Japan

3 story

gantry vault

40
ft
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DWA can be used in the single

pulse traveling wave mode*
accelerator
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A high on-axis gradient is maintained as long as " # 0.3

This implies pulses in the range of a fraction to several ns
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There are several viable

accelerator architectures*
accelerator
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Symmetric Blumlein

SiC switch

HGI

Blumlein

HGI

Coreless zero integral

pulse forming line

+
-

-

SiC or Oil switch

SwitchHGI

Blumlein

* Patents pending

With or without magnetic core
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DWA can be used in the single

pulse traveling wave mode*
accelerator

Beam
Research Program

Lawrence Livermore National Laboratory

*patent pending

Longitudinal Electric Field Plot

Charged Blumleins

Uncharged transmission lines in

this region (not shown)



22

Source

Grid

DWA 100 MV/m

Proton beam

Extraction

electrode

Focus

electrode

Grid Thin vacuum

air window

Patient

Gate electrode
DWA 100 MV/m

Grid

electrode

Spark discharge

proton source*

Novel source and electrode

system provides great flexibility*
accelerator
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*patent pending
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• The DWA proton accelerator uses only

electric focusing fields for transporting the

beam and focusing on the patient

— Wide range of spot sizes (2 mm - 2 cm

diameter) can be obtained for 70 - 250

MeV proton energy - varied on each

pulse

— Variable beam current on each pulse

— Variable beam energy on each pulse

200 kV

100 kV

50 kV

40 kV

30 kV
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Compact proton radiotherapy

system concept* accelerator
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¥ Pencil beam can be mechanically scanned in x and y
¥ Flexible dose delivery via pulse-to-pulse variable

energy and intensity
¥ Energy range 70 - 250 MeV

¥ Multiple patient delivery configurations possible to
accommodate available space

Isocentric option

Vertical option

Horizontal option

with in-situ CT scan

* Patent pending



F5-8, Rev A

We are working with
Tomotherapy, Incorporated
to develop a compact proton

DWA

• System will provide CT-guided rotational IMPT

• Goal is to fit machine in a standard linac radiation
vault

• The beam intensity, spot size and energy can be
varied from pulse to pulse without the use of any
beam intercepting methods

– No range shifting wedges or scattering masks

• Tomotherapy has licensed the DWA technology
from the Lawrence Livermore National Laboratory
and has a Cooperative Research and Development
Agreement (CRADA) with LLNL

Beam
Research Program

Lawrence Livermore National Laboratory
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Compact proton radiotherapy system
concept

“artist's
rendition of
a possible
proton
therapy
system”
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Near term plans for proton

accelerator development
accelerator
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¥ New SiC switches over next 6 months
Ð Optimized dopant levels to lower “on”

resistance and improve quantum
efficiency

Ð High voltage packaging

¥ Subscale prototype
Ð Integrate components into a proof-of-

principle device
Ð Electron demonstration in 6 months
Ð Proton demonstration within 18 months

Proton source

accelerator

Switch

HGI

Blumlein

¥ We are working towards development of a subscale prototype over the
next 18 months
– A small length of accelerator sufficient to verify the accelerator architecture and HGI

performance with SiC switches

Injector
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• DWA promises to dramatically increase the
accelerating gradient of high current accelerators

• Good progress is being made on the
technologies needed for the DWA
– Closing switches

• Oil gaps (> 100 MV/m stress)

• SiC photoconductive switch (27.5 MV/m stress)

– Pulse forming line dielectric materials (> 400 MV/m)

– High gradient vacuum insulators (up to 100 MV/m)

• Compact proton therapy accelerator concept has
been described

Summary
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DWA posters at PAC ‘07
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