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In the 3.3 km Recycler Ring, stacked 8.9 GeV/c p are cooled
both with stochastic (transversely) and electron (3D) cooling.

For ~ 20 hr about 4E12 pbars are stacked.
The more beam is cooled, the less stable it is.

Analysis of transverse coherent instabilities in the Recycler forced
us to solve three theoretical problems:

— Coherent instabilities near the coupling resonance Vx *V,
— Stability analysis with digital dampers

— Coherent antiproton-electron instability



Head-Tail near Coupling Resonance



Head-Tail at Coupling Resonance

As many machines, Recycler stays near V«=V,. Single-particle
motion can be coupled, and so a conventional optical formalism be
invalid.

Optical modes are not plain x/y eigenvectors any more. Instead,
general 4D eigenvectors have to be used.

There are canonical coordinates and momentums — normal variables
- associated with the eigenvectors.

An elementary kick from a leading to a trailing particle has to be
calculated in terms of their normal variables.

After that, Vlasov equation is written in terms of the normal variables
similar to conventional uncoupled case.



Coupled Eigenvectors

In Lebedev-Bogacz presentation (further development of Ripken-Mais), the
general 4D eigenvectors are:
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With R as the revolution matrix



Mode Amplitudes

These basis vectors are orthogonal through the symplectic unit
matrix U :

Vo -U-V_=-2i6_sgn(m)

m n —

U, 0 0 1
U= Uy =

Any vector X in the 4D phase space can be expanded over V''s:

X=>C\V,; czimﬁux
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Elementary Kick

« Conventionally, the elementary kick of the trailing particle is
expressed as

e’W, (s)X .
DoVe

_ e’W, (s)y

PoVo

A6

y

AD, =

* In terms of the phase space vector X, this can be expressed as a
perturbation AX =W -X | and for the amplitudes:

AC, = v;.u-sz;—ZGnmcm
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G, W, isthe wake matrix in a basis of eigenvectors.



Diagonal Elements

Perturbation theory over wake is built similar to Quantum
Mechanics. By the same reason, when |, _y (5> aAv_

Only diagonal matrix elements of G count:

e2

Gy = = ——(BuW, (5) + B, W, (5))

PoVo

Compared with uncoupled case

eZ
C-:'x - = ﬂxWx(S)
PoVo

This shows how the coupled problem is reduced to an uncoupled
one.




Normal Variables

e The complex amplitudes C. can be presented as

A linear phase space transformation
(x,6,,y.6,) = (03, Py, G, P)
Is canonical
since it is provided by a symplectic matrix,

composed from real and imaginary parts of the eigenvectors V

Thus, 4, , and P, are normal coordinates and momenta.



Kick for Normal Momenta

The elementary kick results in
Agq. =0
i n=1,2

e2
Apn :Gnnqn == (ﬂanx(S)+ﬂnyWy(S))qn
PoVo

For uncoupled case, in particular:

Ag, =0

X

eZ

Apx - = IBXWX(S) 0y
PoVo

After that, the Vlasov equation in the phase space (d,.P,) is
exactly identical to the uncoupled case (d, . P,).
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Substitution Rules

Thus, solution of any coupled head-tail stability problem follows from
the corresponding uncoupled case applying the substitution rules for
tunes, wakes and impedances:

vV, 2>V,
ﬂxWx (S) — /anWx (S) + /BnyWy (S)
ﬂxzx(s) — ﬁnxzx(s) +ﬂnyzy(s)

n=1,2

This is valid when |v,—v,|>> Av., (in practice, it is normally so).

In an opposite case, uncoupled Twiss parameters have to be used.
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Beam Stability with a Digital Damper
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Damper: Space Charge

« Beam space charge (SC) separates coherent and incoherent frequencies
by (coasting beam, max):
Nr,

27/28J_T0

Aoy, =

«  Chromatic tune spread: Aw, =w,|mm—-&|oplp

Tune distribution
coherent line

0.4 \ Awsc l
/ #— resonant particles density,

responsible for the Landau
damping of coherent oscillations.

0.1

For Landau damping:
Aw, (1) >(0.2-0.3)Aw,,

0
—0.2 ~-0.15 -0.1 ~0.05 0 0.05 0.1

tune shift

For us, it means that frequencies < 100 — 200 MHz can be unstable
due to the ring impedance.
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Alias Frequencies

To stabilize these broad band of beam frequencies, a digital damper was
installed at Recycler.

Digitizing goes with sampling frequency, so it adds to incoming frequency
sequence of all alias frequencies @ + Qo .

++—— + + + +

Thus, longitudinal mode structure is changed by the damper. For coasting

beam, space harmonics o exp(in@) are notthe case any more —except
low frequencies N <<,/ ,.
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Analog-Digital Converter (ADC)

* An output of ADC was originally at a sample frequency 53 MHz, being
exactly 588 harmonic of the revolution (to filter out all the revolution
harmonics).

 The input signal was detected at 4 times higher frequency, and then an
average of these 4 numbers went as an output.

ADC input and output
1re e e °
e o o — °

0.5
° ° ° °

o
[ ]
[ ]
[ ]
[ ]

time, in samples

ADC input (red dots) and output (blue steps) for
53/5=10.6 MHz input signal
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ADC Matrix

In other words the ADC transformation T works as:

T exp(—im t) =D T . exp(—iw,t)
q

With the matrix elements

o o_2 sinley,/2)
"N o, sin (@7, [(2N))

where N =4 is the averaging number, and 7, =1/ f, =27/ w, ~20 ns is
the output sampling time.
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Mode Evolution

Interplay of the damper, Landau damping and impedance determines
stability of the beam modes:

dA
dt

- .
=T, T A AL A —i(Awy,) A,
q

The ADC matrix T is strongly degenerated: all its eigenvalues but one are
exact zeroes.

With impedance, half of these zeroes are getting unstable; they can be
stabilized by the Landau damping.

Landau damping (Gaussian distribution) and coherent shift:

An:\/%Awscxnexp(—xrf/Z); X_ _Ad,

) Aw,(n)
Aw,,, =—I Nro'b;x Z(w, + Nw,)
27T,
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Two-Beam Instability in Electron Cooling
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lon-electron interactions

Electron cooling is a method to increase a phase space density of a hot (ion
/ pbar) beam by merging it with a co-moving cold electron beam at a small
portion of the pbar trajectory (20 m from 3.3 km at Recycler — details at
Lionel Prost poster).

Cooling may cause several detrimental phenomena:
— Coherent instability due to lack of Landau damping;

— Excitation of single-particle resonances by the cooled Pbeam or
cooling e-beam = lifetime degradatfion;

—~.Coherent p-e instability
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Main Steps

Electron beam responds to an initial pbar beam offset.
The beams are comoving, so the response is local.

Being local and linear, this response can be presented as a perturbation of
the pbar revolution matrix.

This perturbation is a non-symplectic matrix, proportional to a product of
antiproton and electron currents.

Perturbation theory allows to find eigenvalues of the coherent revolution
matrix.
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Electron Drift Response

Due to a solenoidal field in the cooler, electron response is
essentially a drift in a direction orthogonal to the pbar offset.

v,=cExB/B’

21



Dipole motion in the cooler

Rotation symmetry in the cooler allows to use & = X, +1Y;,

U= —kg (&, — &)+ ik & E(0) =&y, £(0)=¢,
Se = —MKgy (& — &) £.(0) =0

with k2 =2an,Z,r [(y°B2A) ki =ZeB/(pc)

e“=i'p

k., =k2/k, ocZn /B

The interaction parameter: o = (K21° )k 1) =w iy 4 o | 1.

| — cooler length

From here, the cooler matrix can be found.
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Coupling is Important

In practice, all the 3 phases (ie, IL, ed) are small, w =kl <<1.Ina
leading order:

Electron response is orthogonal to pbar offset. Thus, for
conventional planar (uncoupled) pbar modes, a work of the electron
response is zero:

FvVv =0

e "1

Thus, the instability, if reveals itself at all, has to be strongly
sensitive to X-Yy coupling of pbar optics.
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Perturbation Theory

The entire revolution matrix: R = (I + P)- R (9

| — identity matrix, P — perturbation.

The perturbation theory is constructed very similar to the Quantum Mechanics.

The tune shift is given by the diagonal matrix element:

The complex phase shifts: Op,=-V,-U-P-V [2

Where V are the 4D eigenvectors, and U — the symplectic unit matrix

The growth rates: A = 1Imdu [T, = - Im(Vn+ -U-P-V, )/(ZTO)

Useful relation: 2T, (A, + A,) =det(R)-1=tr(P)
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lon-Electron Growth Rates

The growth rate follows: c oK

coupling parameter: K, = \/ﬂlxﬂly /1% sin(v,) = \/IBleBZy /1? sin(v,)

A JUPCTITIITIIN
P b
B :
O". .:
Od K

=v
=v

s
s
.....
.........

In case coupling results from the solenoid only:

_oh, L v, = Bl I(Bp)
AT L+ (u, — g1, ) 1y
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Recycler Experience

Originally, Recycler stayed at coupling resonance (0.42, 0.42) . Lifetime
degradation and transverse emittance growth of the cooled pbar beam was
observed. The phenomenon was seen to be sensitive on the pbar linear
density and on the beams offset.

The described theory pushed me to insist on more separation of the tunes.

To have more tune space for stepping out the coupling resonance, the
tunes were moved to (0.46, 0.45) . At these tunes, no emittance growth was
seen (always cooling), and the lifetime behavior was much better.

However - the phenomenon did not show any visible dependence on the
distance from the coupling resonance — at (0.46, 0.46) it was as good!

So, the two-beam instability is excluded at Recycler. Our current conjecture
for the lifetime degradation is excitation of single-particle resonances by an
overcooled core of pbar beam.
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Summary

Three general theoretical problems are solved:

— Head-fail with X-y coupling;

— Beam stability with a digital damper;

— Two-Beam Instability in Electron Cooling.

Everybody is welcome to use that!
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