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Aim of the CLIC study:

develop technology for e-/e+ linear collider with the requirements:
v' E.,, should cover range from ILC to LHC maximum reach and beyond = E_,, = 0.5-3 TeV,
(some physicists keep saying that 5 TeV would be better)
v L > few 109 cm2with acceptable background and energy spread
v E.,;and L to be reviewed once LHC physics results are available
v Design compatible with maximum length ~ 50 km
v Affordable
v" Total power consumption < 500 MW

Physics motivation:

"Physics at the CLIC Multi-TeV Linear Collider: report of the CLIC Physics Working Group,”
CERN report 2004-5

Present goal:

Demonstrate all key feasibility issues and documentin a CDR by 2010 (possibly TDR by 2015)
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The CLIC way to a multi-TeV linear collider - Basic features

« High acceleration gradient

¢

v" "Compact” collider - overall length < 50 km
v Normal conducting accelerating structures

v High acceleration frequency

« Two-Beam Acceleration Scheme

d

v’ Cost effective, reliable, efficient
v Simple tunnel, no active elements

v Modular, easy energy upgrade in stages



Results from CLIC proof of principle in CTF3

Drive beam - 95 A, 300 ns

from 2.4 GeV to 240 MeV

~ [ — gy POWER EXTRACTION
- B i STRUCTURE

.

H\“‘“a

ACCELERATING -. .
STRUCTURES \ s CLIC TUNNEL
- CROSS-SECTION

Main beam — 1 A, 200 ns B;ﬁ:\%&x
from 9 GeVto 1.5 TeV

CLIC Two-Beam scheme

4.5 m diameter




Results from CLIC proof of principle in CTF3

— - '.'I-.'_Zﬁ—b-[-f e -—)

R. Corsini— FAC O7F

Recent changes of key CLIC parameters

Main Linac RF frequency
Accelerating field

Overall length @ E ., =3 TeV

30 GHz

150 MVIm

34 km

=5

=%

—

12 GHz

100 MViIm

48 km

Why?

damping)

(flat minimum for this parameter range)

v 100 MV/m is lowest gradient for a 3 TeV machine

v Very promising results of earlier Molybdenum test structures not reproduced for test conditions
closer to LC requirements (i.e., low breakdown rate, long RF pulses, structures with HOM

v Copper structure tests indicate flat gradient scaling with frequency above >12 GHz

v Parametric study indicates higher efficiency and substantial cost savings for 12 GHz / 100 MV/m

— Concentrate efforts on lower frequency & gradient and copper structures
increases chance of feasibility demonstration by 2010
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CTF Il - Dismantled in 2002, after having achieved its goals
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Breakdown and damage of structures

High-power tests of copper accelerating structures in CTF [l and NLCTA showed severe surface
damage from breakdowns for surface fields around 300 - 400 MV/m.

Microscopic image of damaged iris Damaged iris — longitudinal cut

Possible solutions:

e Optimize the RF design to obtain lower surface field to accelerating field ratio (small a/A)

+ |nvestigating new materials that are resistant to arcing — (tungsten. molybdenum... )
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High-gradient tests in CTF I

200 | |

CLIC goal unloaded

[y
th
i

loaded

continued after inspection

1008 still no damage

Peak Accelerating field (MV/m)

-2~ 3.5 mm copper structure - damaged
=&~ 3.5 mm tungsten iris - undamaged

== 3.5 mm molybdenum iris- undamaged
| | | |

|
0 0.5 1 1.5 2 2.
No. of shots x 10¢

th
w

- A 30-cell structure with Mo irises exceeded the CLIC accelerating field
requirements without damage
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High-gradient tests in CTF I

-- A 30-cell structure with Mo irises exceeded the CLIC accelerating field
requirements without damage

190 MV/m accelerating gradient in first cell - tested with beam | (but only 16 ns pulse length)
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30 GHz Power production in CTF3

| ow-loss
transfer line

High-gradient \

> test stand

Power extraction &
transfer structure (PETS)
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30 GHz Power production in CTF3

Low-loss

~— transfer line
High-g radient
test stand

CTF3 linac

Power extraction &

transfer structure (PETS)
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Low-loss _
transfer line @ 2taas

High-gradient
“q ' test stand

CTF3 linac_—

Power extraction &
transfer structure (PETS) "
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30 GHz Power production in CTF3

| ow-loss
transfer line

High-gradient \

test stand

Power extraction &
transfer structure (PETS)

« Produced power up to about 100 MW — long pulses (up to 300 ns)
available for the first time at 30 GHz

» Structure tests started in 2005 - 8 structures tested until now
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Mo iris — clamped structure, identical
to the one tested in CTF |l
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Mo iris — clamped structure, identical
to the one tested in CTF |l
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CTF3 High-Power test results — 30 GHz
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« Breakdown rate slope for Mo (and W) in general less steep than Cu

+ Mo slope & conditioning limit not consistent in different tests...

Il:-g“:J (EDR)
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HDS 60 @ T=70ns

HDS B0 Reverse @ T=70ns

Circular Cu @ T=70ns

Circular Mo @ T=B1ns

J.A. Rodriguez et al.
FROEBCO1
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CTF3 - SLAC High-Power test results — 30 & 11.4 GHz
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performance

« Structures with scaled geometries at different frequencies have same

Scaling introduced in a parametric model (taking into account RF structure
& beam dynamics constraint), used to study optimum cost & efficiency
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Luminosity / power

D
Optimization
results
CLIC
old parameters
CLIC

new parameters

A. Grudiev et al.
EPAC ‘06
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CLIC main parameters

Center-of-mass energy 3 TeV
Peak Luminosity 7140¥ cm2 s
Peak luminosity (in 1% of energy) 210> Ccmas
Repetition rate o0 Hz
Loaded accelerating gradient 100 MV/m
Main linac RF frequency 12 GHz
Overall two-linac length 41.7 km
Bunch charge 4 10°
Beam pulse length 200 ns
Average current in pulse 1A
Hor./vert. normalized emittance 660 / 20 nm rad
Hor./vert. IP beam size before pinch 53/~1 nm
Total site length 48.25 km
Total power consumption 390 MW

Provisional values
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Drive Beam Accelerator
efficient acceleration in fully loaded linac

R e e A — B B

L

RF Power Source
Layout
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Drive beam time structure - initial

300 ns
-

140 pis total length - 18 x 26 sub-pulses - 5.2 A
2.4 GeV - 45 cm between bunches
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Delay loop ~ 2
gap creation, pulse
compression & frequency

multiplication

Drive Beam Accelerator
efficient acceleration in fully loaded linac

Combiner ring ~« 3

pulse compression &

Combiner ring « 3 frequency multiplication

pulse compression &
frequency multiplication

RF Power Source
Layout

___________ Eﬁﬁdﬂ: T —

Drive beam time structure - initial

300 ns
-

140 pis total length - 18 x 26 sub-pulses - 5.2 A
2.4 GeV - 45 cm between bunches
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Delay loop ~ 2
gap creation, pulse
compression & frequency

multiplication

Drive Beam Accelerator
efficient acceleration in fully loaded linac

Combiner ring ~« 3

pulse compression &

Combiner ring « 3 frequency multiplication

pulse compression &
frequency multiplication

RF Power Source

Layout
S e
iR j
Drive beam time structure - initial Drive beam time structure - final
300 ns 300 ns
«—> ; 54 s
L P P P LT < >
140 pis total length - 18 x 26 sub-pulses - 5.2 A - wn <ol B
2 4 GeV - 45 cm between bunches 26 pulses — 92 A — 2.5 cm between bunches
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Delay loop ~ 2
gap creation, pulse
compression & frequency

multiplication

Drive Beam Accelerator
efficient acceleration in fully loaded linac

Combiner ring ~« 3

pulse compression &
frequency multiplication

Combiner ring « 3

pulse compression &
frequency multiplication

RF Power Source
Layout

Drive Beam Decelerator Sector (26 in total)

Q- Power Extraction

Drive beam time structure - initial Drive beam time structure - final
300 ns 300 ns
«—> ; 54 s
L P P P LT < >
140 pis total length - 18 x 26 sub-pulses - 5.2 A - wn <ol B
2 4 GeV - 45 cm between bunches 26 pulses — 92 A — 2.5 cm between bunches
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Delay loop ~ 2
gap creation, pulse
compression & frequency

multiplication

Drive Beam Accelerator
efficient acceleration in fully loaded linac

Combiner ring ~« 3

pulse compression &
frequency multiplication

Combiner ring « 3

pulse compression &
frequency multiplication

RF Power Source
Layout

Drive Beam Decelerator Sector (26 in total)

Q- Power Extraction

Drive beam time structure - initial Drive beam time structure - final
300 ns 300 ns
«—> ; 54 s
L P P P LT < >
140 pis total length - 18 x 26 sub-pulses - 5.2 A - wn <ol B
2 4 GeV - 45 cm between bunches 26 pulses — 92 A — 2.5 cm between bunches
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Motivation and goals of CTF3 collaboration

Build a small-scale version of the CLIC RF power source, in order to demonstrate:

v full beam loading accelerator operation
v electron beam pulse compression and frequency multiplication using RF deflectors

Provide the RF power to test the CLIC accelerating structures and components

CTF3 is being built at CERN by a collaboration modeled on the large physics
experiments

20 institutes from 11 countries
Chairman of collaboration Board: M. Calvetti (INFN-LNF)
Spokesperson: G. Geschonke (CERN)
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CTF3 — Layout

4A—-12ps

150 Mev —_ NG
\\_;-

DRIVE BEAM AN
LINAC S > - 32A-140ns

; CLIC Experimental Area

150 Mev




Results from CLIC proof of principle in CTF3  '=———ciic+

R. Corsini— FAC O7F

CTF3 — Main components

DELAY LOOP

COMBINER
DRIVE BEAM  chicane Ve

LINAC =

30 GHz

power station \\ e e

: \ linac
Injector R
\ test stand

\ TBL - decelerator CLEX

30 GHZ
test stand
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CTF3 — Collaborations INFN-LNF CIEMAT
BINP LURE CERN

NWU LAPP Uppsala

INFN-LNF
CERN

INFN-LNF

CERN — 3
RRCAT

TSL
CERN

CERN NWU
PSI Uppsala

\\ CEA-DAPNIA
CERN LAL “\\\ CERN

SLAC Uppsala AL
CERN

CIEMAT
UPC IFIC
CERN




Full beam-loading acceleration in TW sections

RF to load
. B

No beam

“short” structure - low Ohmic losses
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Full beam-loading acceleration in TW sections

No RF to load
.

High current
beam

most of RF power
(z 95%) to the
beam

“short” structure - low Ohmic losses




Ebeam

'_::I_'l—l-[-f r(--lr:

Results from CLIC proof of principle in CTF3

R. Corsini— FAC O7F

Full beam-loading acceleration in TW sections

unloaded

Time resolved beam energy
spectrum measurement in CTF3

v

steady state

v

Time (ns)
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CTF3 linac accelerating structures

» 3 GHz 2n/3 TW constant aperture

Dipole modes suppressed by slotted iris
» Slotted-iris damping + detuning with nose cones damping (first dipole’s Q factor < 20)
and HOM frequency detuning

« Upto4 A—1.4 us beam pulse accelerated — no sign of BBU

damping =
slot x P
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Full beam-loading acceleration

| [l |
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in CTF3
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Full beam-loading acceleration in CTF3

e

RF pulse at structure input

v

1.5 ns beam pulse

RF pulse at structure output
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RF pulse at structure input

v

1.5 ns beam pulse

RF pulse at structure output
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e

RF pulse at structure input

v

1.5 ns beam pulse

RF pulse at structure output

Measured RF-to-beam efficiency

a4
3 95.3 %

%j Theory

R |
i | 96% (~ 4 % ohmic losses)

-32 \
3 \
s \/ MKS03 \/ MKS05 \ MKS06 \/ MKS07

] i e b
Spectrometer

Spectrometer
i 10
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Beam combination/separation by transverse RF deflectors

Transverse
RF Deflector, Vg

...................
i LT
.................
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Beam combination/separation by transverse RF deflectors

Transverse
RF Deflector, Vg

...................
i LT
.................

Deflecting
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Beam combination/separation by transverse RF deflectors

Transverse
RF Deflector, Vg

Deflecting
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Beam combination/separation by transverse RF deflectors

Transverse
RF Deflector, Vg

Deflecting
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Beam combination/separation by transverse RF deflectors

POIIQ p \-’OJ”Q

Transverse
- RF Deflector, Vg

> 3

PUJ"2 : \-'0[2

Deflecting
/\'/.\./ \/ Field
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Gap creation & first
Phase coding multiplication x 2

How fo “code” the sub-pulses
L('i’efm' “hAp—C T?.'ff:r-p.'d.w
Sub-Harmonic
Bunching v,/ 2 , .
Combination
/\\/\\/ /\\/ scheme
180° phase
<— switch

Acceleration Vg
even

JAAVAVATAVAVAVAY £ B
Loop

S A

odd buckets

Deflection 1-’0;‘ 2
- 4 “\‘_}

S0 o v e\
\./ \o/ \o/ (| RF deflector
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Fast phase switch from
SHB system (CTF3)

4000 TI ] 666 ps |
-

otk 4 '8 I I
| bR L

- ATV W

3 TW Sub-harmonic bunchers,
each fed by a wide-band TWT

W) 85 666ps=57ns




Beam recombination in the
Delay Loop (factor 2)
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Beam recombination in the
Delay Loop (factor 2)
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Beam recombination in the
Delay Loop (factor 2)
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Beam recombination in the
Delay Loop (factor 2)
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RF injection in combiner ring
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RF Injection in combiner ring in CTF3 preliminary phase (2001-2002)

K OX

-+ Y

Streak camera images of the beam, showing the bunch
combination process

A first ring combination test was performed in 2002, at low current and short pulse,
In the CERN Electron-Positron Accumulator (EPA), properly modified
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RF Injection in combiner ring in CTF3 preliminary phase (2001-2002)

K OX

-+ Y

Streak camera images of the beam, showing the bunch
combination process

A first ring combination test was performed in 2002, at low current and short pulse,
In the CERN Electron-Positron Accumulator (EPA), properly modified
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RF Injection in combiner ring in CTF3 preliminary phase (2001-2002)

K OX

-+ Y

Streak camera images of the beam, showing the bunch
combination process

A first ring combination test was performed in 2002, at low current and short pulse,
In the CERN Electron-Positron Accumulator (EPA), properly modified
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RF Injection in combiner ring in CTF3 preliminary phase (2001-2002)

K OX

83_ps

-+ Y

Streak camera images of the beam, showing the bunch
combination process

A first ring combination test was performed in 2002, at low current and short pulse,
In the CERN Electron-Positron Accumulator (EPA), properly modified
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magnets, power supplies, installatio
CIEMAT: Septa magnets, sextupoles,
correctors, extraction Kickers

INFN: RF deflectors, wiggler, vacuum
chambers, BPM (BPI)

LAPP: BPM electronics

LURE: quadrupoles

: BINP: magnet realization
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First combination test factor 2
(June 07)
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Summary of CTF3 Achievements

* Production and stable acceleration of 4 A beam with full pulse length without
significant emittance growth. \Wake-fields kept under control with HOM
damping+detuning. Consistent with predictions from beam dynamics simulations.

« Measured RF power to beam energy transfer efficiency of 95% in fully loaded
operation for normal conducting linac ! |

« Demonstration of bunch frequency multiplication with delay loop using RF
deflector cavities and phase coding with fast phase switch. Key ingredient to
achieve bunch train compression.

» First circulating beam in combiner ring and test of factor 2 combination.

» Routine 24h, 7 days a week operation of fully loaded linac for 30 GHz production
= fully loaded operation can be very reliable and stable.

F. Teckeretal. A. Dabrowski et al.
THPMNOB3 FRPMS045
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CLEX building

=

June 2006

Construction on schedule
Equipment installation from May 2007,
Beam foreseen from March 2008




CTF3 — R&D Issues
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Conclusions

CTF3 has already demonstrated many CLIC critical issues
v" High-current fully-loaded acceleration

v" Phase-coding and delay loop recombination

Results from structure tests in CTF3 have provided relevant | |

information on structure limitations

Based mainly on such result, CLIC key parameters have
changed, now closer to optimum cost & efficiency

CTF3 is on track to demonstrate the main CLIC feasibility
issues by 2010. Collaboration modelled on large physics
experiments is proving surprisingly efficient.




