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Abstract
Phase space gymnastics is a highly evolved accelerator

physics technique based on the finest properties of the phase
space. Asmodern accelerators become increasingly demand-
ing, these techniques are finding a sharp increase in their
applications. Here we intend only to introduce this topic to
bring attention to the direction it points to.

INTRODUCTION
As accelerator technology advances, the requirements on

accelerator beam quality become increasingly demanding.
Facing these new demands, the topic of phase space gymnas-
tics is becoming a new focus of accelerator physics research.
In a phase space gymnastics, the beam’s phase space dis-
tribution is manipulated and precision-tailored to meet the
required beam qualities. On the other hand, all realization of
such gymnastics will have to obey accelerator physics prin-
ciples as well as technological limitations. Recent examples
of phase space gymnastics include

1. Adapters

2. Emittance exchanges

3. Phase space exchanges

4. Emittance partitioning

5. Seeded free electron lasers

6. Steady-state microbunched storage rings

Each one of these applications involves half a dozen to a
dozen inventions to special cases. It can only be expected
that many more applications are yet to be found. This re-
search filed is very rich and active. In this report, however,
we aim only to illustrate the subject and we will only breifly
address the case of adapters (item 1 above) and give some
of their example applications.
Just like the physical gymnastics, e.g. in the Olympic

games, the skills needed in phase space gymnastics are
highly technical and precise, while the resulting performance
exquisite and beautiful. A comparison of these two gymnas-
tics skills is shown in Fig. 1. Earlier phase space gymnastics
have been mostly applied to the 2D longitudinal phase space,
and took the form of RF manipulations in beam injection, ex-
traction, and phase space displacement acceleration [1]. The
recent advances, led by the seminal papers by Derbenev [2],
begin to incorporate the transverse dimensions and become
much more sophisticated, yielding a new wealth of addi-
tional applications mentioned above.
It should be mentioned here that phase space gymnas-

tics permit precision manipulations because phase space
is conserved to its finest details. Liouville theorem (more

Figure 1: A comparison of phase space gymnastics and
physical gymnastics.

accurately, the condition of symplecticity) is the root cause
of this possibility of phase space technology. The very con-
cept of phase space (a bold extension and abstraction of the
3D real space), and its intricate physical and mathematical
properties (that pave the foundation of these phase space
techniques), however, are not the subject of this report.

ADAPTERS

The idea of adapters was first introduced by Derbenev
[2] and later rapidly extended by him and many others [3]-
[14]. A few adapters of a different variety are shown in
Fig. 2. Derbenev first envisioned applying it to a storage
ring collider to form round beams at the collision point to
mitigate the effect of the encountered beam-beam nonlinear
resonances. This adapter idea has also been adapted for
electron cooling [3,7]. Furthermore, the production of a very
flat beam from a round photocathode immersed in a solenoid
followed by a round-to-flat adapter has been experimentally
demonstrated [10–12].
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Figure 2: A few adapters of a different variety.

During this time, as mentiond earlier, several other kinds
of adapters have been invented, including emittance ex-
change adapters and phase space exchange adapters and
nonsymplectic applications for emittance partitioning have
also been developed, but we do not cover those applications
below.
Consider the 4D canonical phase space Xcan =

(x, px, y, py). We have two representations to describe parti-
cle motion in this phase space:

1. For an uncoupled case, use the Courant-Snyder basis
of planar modes (x and y modes) in a matrix form:

Xcan = Va (1)

where

V =


√
βx cos φx

√
βx sin φx

−αx cosφx−sinφx√
βx

−αx sinφx+cosφx√
βx

0 0
0 0

0 0
0 0√

βy cos φy
√
βy sin φy

−αy cosφy−sinφy√
βy

−αy sinφy+cosφy√
βy


(2)

and

a =


√

2εx sin χx√
2εx cos χx√
2εy sin χy√
2εy cos χy

 (3)

These equations describe the motion of a particle
in a planar beamline whose x and y emittances are
εx, εy and initial betatron phases of χx and χy . Lattice
functions αx,y, βx,y, φx,y are the familiar betatron
parameters in this representation. Indeed by direct

multiplication, we have

xcan = Va =



√
2βxεx sin(φx + χx)√

2εx
βx
[cos(φx + χx) − αx sin(φx + χx)]√

2βyεy sin(φy + χy)√
2εy
βy
[cos(φy + χy) − αy sin(φy + χy)]


(4)

Equation (4) is a very familar result. What may be less
familiar, and it might come as a surprise, is the fact that
this familiar result is actually factorizable according to
Eq. (1).

2. For a fully coupled beam with rotational symmetry (e.g.
in a solenoidal field), one can describe particle motion
using the basis of circular modes (left-handed and right
handed modes) [8]:

Xcan = Ub (5)

where

U =
1
√

2


√
β cos φ+

√
β sin φ+

− sinφ+−α cosφ+√
β

cosφ+−α sinφ+√
β

−
√
β sin φ+

√
β cos φ+

− cosφ++α sinφ+√
β

− sinφ+−α cosφ+√
β

−
√
β cos φ− −

√
β sin φ−

sinφ−+α cosφ−√
β

− cosφ−+α sinφ−√
β

−
√
β sin φ−

√
β cos φ−

− cosφ−+α sinφ−√
β

− sinφ−−α cosφ−√
β


(6)

and

b =


√

2ε+ sin χ+√
2ε+ cos χ+√
2ε− sin χ−√
2ε− cos χ−

 (7)

for a particle with left-handed and right-handed
emittances ε+ and ε− and initial betatron phases
χ+ and χ−. Lattice parameters are α, β, φ+, φ−, i.e.,
there is only one β-function, one α-function, but
two (left-handed and right-handed) phases. Direct
multiplication gives

Xcan = Ub =


√
β(
√
ε+ sin∆+ −

√
ε− sin∆−)

1√
β
(
√
ε+ cos∆+ −

√
ε− cos∆− − α

√
ε+ sin∆+ + α

√
ε− sin∆−)

√
β(
√
ε+ cos∆+ +

√
ε− cos∆−)

− 1√
β
(
√
ε+ sin∆+ +

√
ε− sin∆− + α

√
ε+ cos∆+ + α

√
ε− cos∆−)


where ∆+ = φ+ + χ+,∆− = φ− + χ−.
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Oncewe have the planar basisV and the circular basisU —
both are symplectic — we are now in a position to consider
“adapters”. So far we considered transverse phase space
only. Adapters can also be applied to transverse-longitudinal
coupled systems.

Flat-to-flat Adapters
Flat-to-flat adapter from s1 to s2 is well known.

The job is to design a lattice that provides the map
from the basis V(s1) to the basis V(s2), i.e. the optics
matching from one set of lattice parameters to another.
A moment’s reflection shows that the needed matching
map is given byV(s2)V(s1)

−1, and a simple calculation gives

V(s2)V(s1)
−1 =



√
βx2
βx1
(cos µx + αx1 sin µx)

√
βx1βx2 sin µx

(αx1−αx2) cosµx−(1+αx1αx2) sinµx√
βx1βx2

√
βx1
βx2
(cos µx − αx2 sin µx)

0 0
0 0

0 0
0 0√

βy2
βy1
(cos µy + αy1 sin µy)

√
βy1βy2 sin µy

(αy1−αy2) cosµy−(1+αy1αy2) sinµy√
βy1βy2

√
βy1
βy2
(cos µy − αy2 sin µy)


(8)

Equation (8) of course is a well known result; µx = φx2 −
φx1, µy = φy2 − φy1 are the betatron phase advances from
s1 to s2. A particle with initial condition (3) is now brought
from position s1 to position s2.

Let us make a few side comments here concerning Eqs. (1)
and (8):

• Equation (1) is not to be confused with a similar-
looking expression Xout = M Xin, which relates the final
coordinates Xout to the initial coordinates Xin through a
beamline element with map M and is the job of Eq. (8).
This should become apparent when one observes that
the final product of the multiplication of Va yields
Eq. (4).

• Equation (1) factorizes the particle’s motion into a prod-
uct of a factor V that depends only on the accelerator
optics, and a factor a that depends only on the parti-
cle’s initial conditions. It is important to note that V
has nothing to do with the particle while a has nothing
to do with the accelerator.

• Now Eq. (8) goes further in factorization. It says that
the map that brings the accelerator optics from s1 to
s2 can be factorized into a factor V(s1)

−1 that depends
only on the optical properties at s1 and a factor V(s2)
that depends only on the optical properties at s2.

The elegance of this formalism should be very apparent.

Round-to-round Adapters
Round-to-round adapter from s1 to s2, i.e., from one set

of circular lattice parameters to another, is given by the map
U(s2)U(s1)

−1. Although the algebra is somewhat involved,

it can be shown that the result can be written as

U(s2)U(s1)
−1 = R−1(θ)T (9)

where R(θ) is a rotation matrix with rotation angle θ,

R(θ) =


cos θ 0 sin θ 0

0 cos θ 0 sin θ
− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

 (10)

and

T =



√
β2
β1
(cos µ + α1 sin µ)

√
β1β2 sin µ

(α1−α2) cosµ−(1+α1α2) sinµ√
β1β2

√
β1
β2
(cos µ − α2 sin µ)

0 0
0 0

0 0
0 0√

β2
β1
(cos µ + α1 sin µ)

√
β1β2 sin µ

(α1−α2) cosµ−(1+α1α2) sinµ√
β1β2

√
β1
β2
(cos µ − α2 sin µ)


(11)

The left-handed and right-handed betatron phases at s2 are
then given by φ+2 = φ+1 + µ − θ and φ−2 = φ−1 + µ + θ.

There are two ways to realize this desired map (9):

• a quadrupole channel that provides the map (11), fol-
lowed by rotating the entire subsequent beamline (not
including the quadrupole channel) by θ.

• A uniform solenoid with strength ks and length L (in-
cluding its two ends) will produce this map with θ =
−ksL/2, µ = ksL/2, β1 = β2 = 2/ks, α1 = α2 = 0,
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where the solenoid strength is specified by ks =
Bs

(Bρ)0
with Bs the solenoid magnetic field and (Bρ)0 the mag-
netic rigidity of the electron beam.

Round-to-flat Adapters
A round-to-flat adapter is given by the map V(s2)U(s1)

−1,
which can be shown to have a general form of a round-to-
round adapter, followed by a specific round-to-flat insertion
with map (VU−1)0, followed by a flat-to-flat adapter.

These three adapters have the following parameters:

• The first round-to-round transformation is from
(α, β, φ+, φ−) to (α = 0, β, φ+ = φy + µ + π/4, φ− =
φy + µ − π/4).

• The second round-to-flat transformation (VU−1)0 is
from (α = 0, β, φ+ = φy + µ+ π/4, φ− = φy + µ− π/4)
to (αx = αy = 0, βx = βy, φx = φy).

• The last flat-to-flat transformation from (αx = αy =
0, βx = βy, φx = φy) to (αx, βx, φx, αy, βy, φy).

Combining all steps, we then have finally an adapter from
(α, β, φ+, φ−) to (αx, βx, φx, αy, βy, φy). Each step, although
stated in language of mathematics, is directly translatable to
conventional lattice designs.

The special round-to-flat map (VU−1)0 has a simple form
[3, 9, 10]

(VU−1)0 = R
(
−
π

4

) 
−

√
βy
β sin µ −

√
ββy cos µ

cosµ
√
ββy

−

√
β
βy

sin µ

0 0
0 0

0 0
0 0√

βy
β cos µ −

√
ββy sin µ

sinµ
√
ββy

√
β
βy

cos µ


R

( π
4

)
(12)

It is easy to see that (VU−1)0 represents a regular quadrupole
channel (miminum of three quadrupoles in general) ro-
tated 45◦. The 45◦ rotation renders the quadrupoles skew
quadrupoles. Design of the adapter therefore reduces to a
regular lattice matching problem.
Inserting a round-to-flat adapter brings a beam from a

round optics to a flat optics. A round beam with left-handed
and right-handed emittances of (ε+, ε−) is transformed to
a planar beam with x- and y-emittances given by (εx =
ε+, εy = ε−).

Flat-to-round Adapter
Reversing the round-to-flat adapter, a flat beam with x-

and y-emittances of (εx, εy) is transformed to a round beam
with left-handed and right-handed-emittances (ε+ = εx, ε− =
εy). This adapter can also be achieved by an insertion with
three skew quadrupoles.

Applications of Flat-to-round and Round-to-flat
Adapters

As mentioned, the idea of adapters was first suggested by
Derbenev 1993 to control the beam-beam effect in storage
ring colliders. But it has subsequently been much extended
for other applications.

Storage Ring Colliders In this collider application [2], a
planar flat beam in regular arc cells is transformed by a flat-
to-round adapter to become a round beam at the collision
region. The collision region is immersed in a solenoidal
field. After the collision region, the beam is brought back to
the regular arc by a round-to-flat adapter. With a round beam
at the collision point, this possibly reduces the beam-beam
effect due to much reduced number of nonlinear resonances.

Linear Colliders In this application [5], a round beam is
produced at the cathode immersed in a solenoidal field. After
exiting the solenoid, a round-to-flat adapter transforms the
beam into a flat planar configuration, which is what is needed
for linear collider applications. The use of adapter here
avoids the need of a damping ring to provide flat beams.

Electron Cooling Applying a flat-to-round adapter to a
very flat beam (εx � εy), a round beam can be produced
with ε+ � ε−. Immersing the beam in a matched solenoid
with appropriate magnetic field, particles in the beam will
move in the solenoid with very small angular divergence,
i.e., the beam becomes extremely laminar with all particles
moving almost straight ahead along the solenoidal field with
zero Larmor radius and as a result almost zero transverse
temperature. This is an ideal beam for performing electron
cooling [3, 7].

Diffraction Limited Synchrotron Radiation While the appli-
cation to electron cooling is most likely performed in a linac
environment, the same configuration can also be installed in
a synchrotron radiation storage ring. By an insertion with
the configuration (flat-to-round adapter + solenoid + round-
to-flat adapter), a conventional 3rd generation synchrotron
radiation storage ring can in principle reach diffraction limit
for X-rays [6, 13].
Perhaps one can illustrate the point as follows. To reach

diffraction limit for X-rays, much efforts have been dedicated
to the design of “ultimate storage rings” aiming for exceed-
ingly small εx . The beam also has an even much smaller εy .
To reach diffraction limit, we operate the beam fully coupled,
so that the coupled beam has both its horizontal and vertical
emittances given by the arithmatic mean of εx and εy , i.e.
they are both equal to (εx + εy)/2. In contrast, the round
beam adapter scheme yields a beam with its horizontal and
vertical emittances equal to the geometric mean of εx and εy ,
i.e. they are both given by √εxεy . Since εy � εx , it is clear
that the adapter round beam scheme has a great advantage
in reaching small emittances. If, for example, εy = 10−3 εx ,
then one potentially gains a factor of 15 reduction in the
beam emittances.
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In principle, therefore, the adapter round beam scheme
could be applied to conventional 3rd generation storage ring
facilities to provide coherent soft X-rays. If so, one can
save the effort of developing ultimate rings. In practice,
however, the catch is that there is missing a way to match
the electron optics to that of the laser optics [15]. As it
stands, the requires solenoid field turns out too strong and
the required solenoid length is too long.
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