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Abstract 
Orbit correction is one of the most fundamental pro-

cesses used for beam control in accelerators.  The CADS is 
a CW machine and a few particle loss will cause serious 
damage to the machine. Therefore, the quality of the orbit 
control is an essential component towards the efficiency in 
operation, flexibility in machine studies. This paper de-
scribes an orbit correction implementation using singular 
value decomposition (SVD) of the response matrix and the 
simulation of its application to the CIADS injector II. This 
effort was achieved by exploiting the capabilities of Py-
thon, which provided the hands-on modules to develop the 
GUI code easily. Also involved in this effort was the code 
TraceWin, which was used to construct the virtual machine 
by providing the parameters of the Linac optics. Several 
iterations of the orbit correction may be required in order 
to obtain a satisfactory control of the orbit, because the the 
response matrix changes with iteration in an attenuating 
mode. After appropriate removal the redundancy steerers, 
a promising result of the orbit control was achieved. 

Introduction 
The CIADS project aims to deliver high power proton 

beams for nuclear transmutation. The neutrons created in 
the target from a spallation reaction between protons and 
heavy elements drive the subcritical reactor for sustained 
chain reaction. CIADS will be a continuous wave (CW), 
proton RF superconducting linear accelerator with current 
(10mA) and final energy 1.5GeV. The pre-feasibility study 
facility, injector II established mainly by IMP, was suc-
cessfully commissioned in June 2017 with the jointed ef-
forts of IMP and IHEP. The overall architecture of injector 
II is shown in Fig. 1. The chosen sequence of accelerating 
sections is quite standard for modern pulsed linac designs. 
The ion source is followed by a Radio Frequency Quadru-
pole (RFQ), a MEBT and the superconducting accelerating 
structures. Four cryomodules of the accelerating structures 
bring the energy from 2.1MeV at the exit of RFQ up to 
25MeV: the first three cryomodules and the last one are 
fabricated by IMP and IHEP respectively. 

 
 

Figure 1: Scheme of Injector II. 

CIADS is designed to enable hands-on maintenance and 
minimize the performance deterioration of superconduct-
ing cavities caused by particle loss, which means that its 
beam loss will be below 1 W/m for the entire accelerator. 
These specifications will place CIADS in line with the next 
generation of accelerators worldwide. In real life errors 
will be present: misalignments, incorrect field settings, 
magnetic field inhomogeneities, etc. These errors can 
cause unacceptably large deviation of the orbit. Usually the 
distorted orbit can be corrected using the dipole correctors 
and BPMs.  In this paper, we select a partial section of in-
jector II, consisting of MEBT and the first three cryomod-
ules, to conduct the correction study. The distribution of 
correctors and BPMs is shown in Fig. 2. MEBT includes 7 
quadrupoles, each of which contains a pair of horizontal 
and vertical steerers, and there are 4 BPMs separately in-
stalled at the center of 1th, 4th, 5th and 7th quadrupoles. 
Each cryomodule consists of a series of periods and there 
are a magnet assembly of focusing solenoid and corrector 
coils, a cavity and a BPM cell in each period. 

 

 
Figure 2: The layout of MEBT and a cryomodule period 
 
In the orbit correction study, we use TraceWin to simu-

late the behaviour of proton beams in the accelerator and 
displace the central orbit at the accelerator entrance in the   
transversal direction to introduce an artificial orbit devia-
tion. As a preliminary attempt, a well-known orbit correc-
tion approach using SVD of the response matrix was im-
plemented on the accelerator to estimate the correction ef-
fect on bringing back the beam orbit. 

Orbit Correction Method 
According to accelerator theory the transfer matrix R be-

tween positions 1 and 2 is given by [1]: R = ൤ܴଵଵ ܴଵଶܴଶଵ	 ܴଶଶ൨                                 (1) 

The elements of the matrix are as follows: ܴଵଵ = ඥߚଶ ⁄ଵߚ ߰∆ݏ݋ܿ) + ଵଶܴ (߰∆݊݅ݏଵߙ = ඥߚଵߚଶ݊݅ݏ∆߰ ܴଶଵ = −[(1 + ߰∆݊݅ݏ(ଶߙଵߙ + ଶߙ) − ଶ ܴଶଶߚଵߚඥ/[߰∆ݏ݋ܿ(ଵߙ = ඥߚଶ ⁄ଵߚ ߰∆ݏ݋ܿ) −  (߰∆݊݅ݏଵߙ
where ߚ௜ and ߙ௜ ( i=l, 2) are the machine functions; ∆߰ 

is the phase difference between positions 1 and 2. 

CM2 CM3 CM4 HEBTLEBT Ion 
source RFQ MEBT CM1

2.1MeV 25MeV 
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Assume an orbit corrector is located at position 1 and a 
position monitor is located at position 2. A kick Δݔଵᇱ  cre-
ated by an orbit corrector at position 1 will cause a distor-
tion Δݔଶ of the orbit, which can be observed at position 2 
by a position monitor. This signal can be described as: Δݔଶ = ܴଵଶΔݔଵᇱ = Δݔଵᇱඥߚଵߚଶ(2)                  ߰∆݊݅ݏ 

If there are some other orbit correctors installed along 
the accelerator, then at the jth monitor (j = 1, ..., N) the sig-
nal Δx௝ will be the sum of all of those signals Δx௜௝ (i = 1, 
..., M), caused by the ith orbit corrector, which gives the 
kick Δx௜ᇱ: Δx௝ = ∑ Δݔ௜௝ெ௜ୀଵ = 	∑ (ܴଵଶ)௝௜ெ௜ୀଵ Δx௜ᇱ         (3) 

Two vectors X and X' are introduced. X contains the sig-
nals Δx௝ from position monitors and X' contains the kicks Δx௜ᇱ from orbit correctors: X = ൭Δxଵ⋮Δxே൱         Xᇱ = ൭Δxଵᇱ⋮Δxெᇱ ൱                 (4)                

The equation for describing the relation between signal 
X (displacement of orbit) received from position monitors 
and the kicks X' created by orbit correctors can be written 
as: X = AX′                                (5) 

 
where the N x M matrix A is the so-called response matrix. 
Its elements Aji relates the orbit displacement Δx௝  at jth 
BPM to the dipole kick change Δx௜ᇱ	at ith corrector.  In real-
ity X will be measured by BPM and A will be obtained 
from calculation or measurements. 

Linear orbit correction reduces to inverting the (usually 
non-square) A matrix, or solving this system of linear 
equations with a linear least-squares method. One then has 
a set of equations that give the set of corrector changes nec-
essary to produce a given orbit change on all BPMs. Put-
ting in the negative of the measured BPM positions for this 
given orbit change will give a set of corrector strengths that 
make all BPM positions zero and thus correct the orbit. 

Traditional linear algebra courses teach methods to cre-
ate square matrix inverses, but don't teach the more general 
approach to finding an optimal solution for a non-square 
linear problem. 

Singular value decomposition (SVD) is the most com-
mon approach to producing a “pseudo-inverse” for A. 
Background information is in the corresponding Wikipedia 
article [2] but the approach is fairly straightforward and 
well-supported by standard linear algebra environments 
like Python numpy. We write A as a product of three ma-
trices U, Σ, and V as A	 = 	UΣV்                                  (6) 
where U is a N x N orthogonal matrix and V is a M x M 
orthogonal matrix, while Σ is a N x M diagonal matrix with 
positive or zero values on the diagonal with descending 
magnitude which represents the sensitive of the orbit dis-
placements at BPMs to the kick changes at correctors. For 
small singular values that are “near zero”, we can set them 
to zero. This gives the opportunity to filter out noise in the 
measurement. We calculate the pseudo-inverse of Σ by re-

placing all non-zero diagonal terms s௜  of Σ with their in-
verses 1 	s௜⁄ . Then the pseudo-inverse of A is constructed 
as Aିଵ 	= 	VΣିଵU்                                (7) 
where U் is the transpose of U.  
This provides the solution of the corrector changes neces-
sary to remove the measured orbit displacements: X′ = Aିଵܺ                                       (8) 

Correction Results 
We used two basic software tools for orbit correction 

study: TraceWin for tracking the beam orbit in the ac-
celerator and python for data processing. TraceWin is a 
global tool box oriented to accelerator design and realis-
tic simulations with many useful features. One of the 
main specificity of TraceWin, probably unique in the 
plethora of existing codes, is to make possible to run dif-
ferent models with various levels of sophistication. Thus, 
model complexity can be gradually increased from en-
velope optic with hard edge linearized elements and 
space-charge to massive tracking 3D simulations using 
PIC space-charge, field maps, and use of automatic tun-
ing procedures in realistic (imperfect) accelerators. Py-
thon is free and open source which includes natively an 
impressive number of general-purpose or more special-
ized libraries, and yet more external libraries are being 
developed by Python enthusiasts.  

 
Figure 3: Orbit correction workflow diagram.  

For ease of use we have developed a python GUI code 
for users to select the correctors and BPMs involved in 
the orbit correction and launch the automatic correction 
process.  In the underlying orbit correction process py-
thon calculates the response matrix iteratively from the 
first column to the last column, where a certain column 
is obtained by giving a unit kick change to a given cor-
rector, running the TraceWin simulation on the specified 
accelerator, recording the corresponding displacements 
of the downstream BPMs and restoring the corrector to 
the original status. When the response matrix is obtained, 
the off-the-shelf tool SVD in Python numpy will be used 
to calculate the pseudo-inverse of the response matrix 
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and finally the set of corrector changes required can be 
easily calculated. Figure 3 shows the entire workflow for 
the orbit correction.  

To produce an articifial orbit deviation, we simulate 
the behavior of the beam in a perfect accelerator except 
a transrverse orbit displacement at the accelerator 
entrance. Since the beam do not pass through the 
magnetic center of the magents, a focusing or defocusing 
force acting on the beam will deflect the orbit more and 
more deviated from the reference orbit. Of course orbit 
corrections were carried out  in the immediate following. 
Sometimes several iterations of orbit corrections are 
necessary in order to get a better correction effect at the 
expense of time, because the response matrices vary 
from iteration to iteration until the orbit  does not change 
any more.  When there are more correctors than BPMs a 
multiplicity of solutions is possible. In this case some 
correctors do not contribute to observable orbit 
distortion and can be discarded[3]. This is the reason for  
setting the singularity rejection parameter to reject the 
correctors having little correction ability. The correction 
results for the case of the beam with a 2.5mm horizontal 
displacement are shown in Fig. 4. 

 
Figure 4: Figures from top to bottom respectively represent 
orbits before correction, after first correction and after sec-
ond correction while a 2.5mm horizontal displacement was 
applied to the input beam. 

In the above orbit corrections we only considered the 
simplest alignment error, an transversal orbit displacement 
of the input beam, and more comprehensive errors are 
needed to be assined to imitate the real accelerator with 
various misalignment errors like  displacement and rotation 
of the magnets. 

Conclusions 
The orbit correction performed on the virtual machine 

of injector II, in which the beam behavior is simulated 
by TraceWin, has a satisfactory result. It was just a trial 
of the algorithm of the response matrix, and more studies 
will be done to optimize the correction scheme. We also 
consider applying it to the actual machine in the future. 
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