Hot Topic II: Is 35 MV/m still a good choice for ILC?

Guide for discussion

- Cavity performance at vertical test (VT)
 - Limit by field emission (FE)
 - Limit by quench
 - Scatter of performance
 - QA of preparation, diagnostics
 - Coordination of activities in different laboratories
 - Activation of additional resources (industry, laboratories)
- Cavity performance in module
 - Improvement / degradation compared to VT
 - Scatter of performance (adjustable RF power)
 - Diagnostics in module
- Identify action items and give ranking

ILC Perspective

S0/S1 Status

Lutz Lilje GDE

Background

- Snowmass definition
 - 'Forward-looking'
 - ILC operational gradient 31.5 MV/m in accelerator
 - Assumes equal power distribution
 - Margin for operation and potential degradation from low-power acceptance test due to installation to module: 10 %
 - 35 MV/m in vertical test
 - Problematic issue
 - Large scatter in performance needs to be addressed
 - Several nine-cell cavities have performed higher than 35 MV/m in low-power and high power tests
 - Understanding of available resources was not well understood at Snowmass
- S0/S1 Goal
 - Charge and requested timeline
 - Decision on the gradient by end 2009
 - could be threefold: up, down or don't change
 - Revision of design still possible by 2010 (Publication of the EDR)
 - Plan and Outlook
 - Achievements
 - Missing links
 - Discussion

Motivation: ILC Cost for lower average gradients (following C. Adolphsen)

- Assume a distribution of gradients of a current cavity production with a large spread
 - average 28 MV/m ranging from 22-34 MV/m, flat distribution
 - e.g. DESY 4th production without Ethanol or flash BCP
 - tweak power distribution
 - reduce overhead a bit
 - due to a small loss in the efficiency of the RF unit
 - increases linac length by 12.5 %
 - yields 7% increase of total project cost ~500 MILCU
- Thus a major cost risk is associated with the average gradient.
 - As long as a wide range of gradients can be accommodated only the average gradient matters.

3

S0S1 Gradient Task Force Charge

from ILC Executive committee to R&D board

- The RDB is asked to set up a Task Force to carry out a closely coordinated global execution of the work leading to the achievement of the accelerating gradient specified in the ILC Baseline.
- A definition of the goals for the cavity performance in terms of gradient and yield and a plan for achieving them should be proposed by this group, which should take account of the global resources available and how they may be used most rapidly and efficiently.
- The accelerating gradient performance and yield should be specified both for an individual 9-cell cavity and for an individual cryomodule, and the plan should cover the demonstration of this performance in both cases.
- The GDE will facilitate the coordination at the global level to achieve this vital goal as soon as possible.

'S'-issues: Nomenclature

- S0
 - Achieve 35 MV/m in 9-cell cavity in vertical dewar tests (low-power) with a sufficient yield
 - Staged approach with intermediate goals to track progress
- S1
 - Achieve 31.5 operational as specified in the BCD in more than one accelerating module
 - and enough overhead as described in the BCD.
- S2
 - a string of N modules with full xyz...by date ...
 - Need for a linac ?
 - Endurance testing

5

S0 Plan and Status

- Three closely coupled activities partially progressing in parallel
 - This is needed to separate cavity preparation and production issues
 - A lot of data will be (is already) available by the time for the EDR writing
- Single-cell R&D
 - Establishing more reliable final preparation parameters
 - Focus on the final rinse after EP before HPR:
 - E.g. Fresh EP, Degrease, Ethanol
 - Several results are available esp. KEK (see this Workshop)
 - In the Framework of TESLA Technology Collaboration
- Tight-loop
 - International multi-cell cavity exchange
 - Includes repeated processing in the same institute as consistency check
 - Comparison of regional differences in preparation and testing
 - First results available esp. US data (see this Workshop)
 - Infrastructure not fully available
 - New installations no yet fully operational
 - Infrastructure blocked
 - Missing redundancy in infrastructures is an issue
- Production effort
 - Monitor ongoing productions esp. XFEL preparation
 - Results from DESY (see this Workshop)
 - Qualification of new vendors is difficult

DESY 4th: Field Emission Analysis

Analysis of Quenches 4th Production

S1: Data from DESY

Outlook

- Surface preparation has been improved with Fresh EP, Ethanol rinse and degrease
 - Field emission has been reduced
- More data coming up
 - S0:
 - Tight-loop exchange of nine-cells starting using the improved rinses where possible
 - More productions on the way e.g. at DESY, US
 - **S1**:
 - 2 more modules under construction this year (DESY,US)
 - Remember:
 - Need some answer (up, down, remain same) by end of 2009 for EDR
- The results are still scattering significantly due to thermal quenches
 - In a lot of cases T-maps point to the electron-beam weld region
 - Several questions can be asked...

Questions & Open Issues

- Fresh EP needs still validation on multi-cells
- Is the lower field consistently related to equator region heating?
 - A more detailed compilation of the data would be desirable.
- Are there measurements which could be done to determine the source of the quench i.e. determine the nature of these defects?
- Is the quality control for the weld preparation insufficiently described? If not, how can it be improved?
- A second less likely explanation is that the breakdowns observed at the equator region are related to multipacting which for elliptical cavities typically occurs around 17-20 MV/m.
 - Under normal circumstances low-power processing removes multipacting within a few minutes to up to one hour.
- Is there a effective processing strategy and is it being applied consistently?

Ichiro5_16sep07

