General aspects of superconductivity

Alex Gurevich,
gurevich@magnet.fsu.edu

National High Magnetic Field Laboratory,
Florida Sate University, Tallahassee, FL 32310, USA

2007 SRF Workshop, Beijing, China, Oct. 11, 2007



History

Discovered in 1911 by Heike Kamerlingh Onnes
and Giles Holst after Onnes was able to liquify
helium in 1908. Nobel prize in 1913
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Meissner effect and critical field

Complete magnetic
shielding by circulating
surface supercurrents

superconducting

Crirical magnetic field

normal

Zero resistivity at T < T, results from

a phase transition to the new
superconducting state

Key experimental facts

Magnetic field is expelled from
a superconductor (Meissner effect, 1933).

Superconductivity is destroyed
by magnetic field H > H_(T)

Thermodynamic critical
magnetic field H,(T).

Empirical formula:

H (T) = HC(O)[l - (T/Tc)z]

C



The key difference between superconductors and
perfect normal conductors
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Normal metal: not a phase transition

but the infinite relaxation time constant
T = L/R (ideal skin effect)

—magnet

superconductor

Levitation of a magnet
over a superconductor

= asuperconductor expels dc
magnetic flux

= pehavior of good normal
metals and superconductors
IS similar in ac magnetic fields




London equations (1935)

Two-fluid model: coexisting SC and N
“liquids” with the densities n(T) + n (T) = n.

Electric field E accelerates only the SC
component, the N component is short circuited.

Second Newton law for the SC component:
mdv,/dt = eE yields the first London equation: T. T

dJ/dt = (e?n/m)E — J=oE

(ballistic electron flow in SC) (viscous electron flow in metals)

Using the Maxwell equations, VX E = -u,dH and VxH = Jg
we obtain the second London equation: A

J2VH -H=0

ezns(T ),uo

m 1/2
London penetration depth: |4 =
T




London equation explains the Meissner effect

= magnetic field penetration into a slab: H(x)

J,  A*H"-H =0

Y

Screening surface current density J (y):

H=He", (="

= Supercurrents completely screen the external field H,

= Meissner effect: no magnetic induction B in the bulk.

= Surface current density cannot exceed the depairing
current density J:




Superconducting current, order parameter and phase coherence

= All superconducting electrons are paired in a coherent quantum state
described by the macroscopic complex wave function ¥ = (n./2)"?exp(i)
= The same phase 6 for all superconducting electrons.

= Phase gradient VO results in a superconducting current J = -(en/m)Ve !

= Phase gradient in a magnetic field (see Feynman'’s lectures, vol. 2)

V9—>V¢9+ A,

= Superconducting current density

Diamagnetic

- <«— Cooper pairs!

—

J =

A

2 Vo+
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What Is the phase coherence?

Incoherent (normal) crowd: Phase-coherent (superconducting) condensate
each electron for itself of electrons



Magnetic flux quantization

What magnetic flux @ = JBdS can be trapped in a hollow cylinder?

Integrate J, along the contour | in the bulk, where J_ =0:

J §(¢°V9+A d =0

Au, '\ 2r

Use the Gauss theofem: @ = JVxAdS = $AdI, and the
fact that the wave ffinction ¥’ = (n/2)"2 exp(i6) must be
single valued, $VOdl =+2rn, n=0,+1,+2 ... . Hence,

N~

® = £ng,, @, =hl|el=2.07x107V s

= Quantized flux (London, 1950; Deaver and Fairbank, 1961) is a trademark of magnetic
behavior of superconductors (magnetic vortices, SQUID interferometers, etc.)



Cooper pairs and the BCS theory of superconductivity

Bardeen-Cooper-Schrieffer (BCS) theory (1957).
Nobel prize in 1972

= Attraction between electrons with antiparallel
momenta k and spins due to exchange of lattice
vibration quanta (phonons)

= |nstability of the normal Fermi surface due to
bound states of electron (Cooper) pairs

= Bose condensation of overlapping Cooper
pairs in a coherent superconducting state.

= Scattering on electrons does not cause the electric
resistance because it would break the Cooper pair

_k¢
Cooper pair on the Fermi surface results in the macroscopic phase coherence

The strong overlap of many Cooper pairs




BCS theory (cont)
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Superconducting statefor T <Tc

= Superconducting gap A on the Fermi surface
= Critical temperature: T = 1.13T exp(-1/y),

vy = VN =0.1-1is a dimensionless coupling
constant between electrons and phonons

2A =352kgT,, T, << Ty~ 300K

= For T=0, all electrons are bound in the Cooper pairs

= For T<< T, a small fraction of electrons are unbound
due to thermal dissociation of the Cooper pairs

n(T) = ny(rnT/2A)Y2exp(- AIT)

This normal fraction defines the small BCS

surface resistance



Effect of current on thermal activation

Rocking “tilted” electron spectrum in the
current-carrying rf state J = J,coswt

E(p) =%y +(p’/2m- EF)Z

Superfluid velocity v (t) = J/ne

=
N
B
)
<
go!
e
N
B>
+
)
<
o)
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= Reduction of the gap A(v,) = A - pF|VS| In the electron spectrum increases the density
of thermally-activated normal electrons n (J), thus increasing R,

= Critical pairbreaking velocity: A
V. =— Clean limit



Problems with the London electrodynamics

= the linear London equations

el EIR AVPH-H =0
Hoy

along with the Maxwell equations describe the electrdynamics of SC at all T if:

= J, is much smaller than the depairing current density J
= the superfluid density n, is unaffected by current

= (Generalization of the London equations to nonlinear problems
= Phenomenological Ginzburg-Landau theory (1950, Nobel prize 2003)

was developed before the microscopic BCS theory (1957).
= GL theory is one of the most widely used theories




GL free energy

= Complex superconducting order parameter ¥ = (n./2)"?exp(i0)

= ForT=T,, ¥ is small so the free energy can be expanded in the Taylor series in ‘¥

2 - A 2 2
FoF, [V aM) WP+ 2 18 [+ | v 228 N Aol
2 2m @, 2
nonlinear inhomogeneity  magnetic
= The coefficient o(T) = o,(T - T)/T, changes sign at T
SF oF
Normal state Superconducting state

T>T, ¥=0 T<T, W)= (ol/p)”



Equilibrium order parameter and H,

VY
= Spontaneous order parameter ‘¥, = [n/2]? below T 0

7 :\/“o(Tc—T) \

AT,

= Energy gain defines the thermodynamic critical field H..

I:n B Fs _ az(T) _ /uOch(T)
Y, 28 2 H

= Linear temperature dependence of H (T) near T :

Uy (Tc _T)

H.(T)=

VAo T

in accordance with the empirical relation H_(T) = H, [1 - (T/T )?]




GL equations for nonuniform ¥(r) and A(r)

= Energy minimization conditions oF/6W* = 0 and 6F/0A = 0 yield the GL equations
for the dimensionless order parameter y = ‘¥/\¥

2

27T -

§2£V+¢—A) v +y -y |y =0,
0

2
VxVxﬂsz:—‘wi (% V9+Aj
A 27

Two coupled complex nonlinear PDE for the pair wave function wy(r) and the
magnetic vector-potential A(r), (B=VxA).

= Two fundamental lengths & and A

= Boundary condition between a superconductor and vacuum J, = 0:

(V N 27 AJI/]ﬁ _ 0

0




Fundamental lengths A and & and the GL parameter x = A/

= Magnetic London penetration depth: A
1/2
m T
ATy =[P c
267 11,04, T.-T !
T, T
= Coherence length — a new scale of spatial variation of the superfluid density
ng(r) or superconducting gap A(r):
2 1/2 T
5(T)= -
dme, T.-T .
T. T
= The GL t =ME isind dent of T.
e GL parameter k= A/€ is independent o BC(T) _ ?,

= Critical field H,(T) in terms of A and &:

2 272E(T)A(T)



Depaliring current density

= What maximum current density J can a superconductor carry?
= Consider a current-carrying state with y = y,exp (-igx), in a thin filament, where
g is proportional to the velocity of the Cooper pairs. The GL equations give:

2 J=1
2 1— E£2 2’ J = '//o¢oq d
2 27 cu, | T AT

= Current density as a function of q: J<J,

= 9,4 (1- 52q2) < | Suppression
27/ Zﬂo of n_ by current

= Maximum J at &g = 1/¥3 yields the depairing
current density: sl

3/2
3, =—% 2 =054 0 o[ 1-
3\/§ﬂ' 0/1& A Tc




Paibreaking field instability of the Meissner state

= Meissner state can only exist below the superheating field H < H,

= Periodic vortex instability of the Meissner state as the current
density J, = H/A at the surface reaches ~ J

= GL calculations of the superheating
field Hy (Matricon and Saint-James, 1967)

B, ~1.2B,,

B, ~ 0.745B,,

= B, decreases as the surface gets

dirtier and « increases.

k=1

Kk>>1
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Relation of H to the pairbreaking velocity

= Estimate H, at T=0 from the condition that the superfluid velocity reaches
the pairbreaking v. = A/p. at the surface

J.=enA/p.=H_ /A

= Substitute here the BCS expressions for the coherence length &, London
penetration depth A, and the thermodynamic critical field H, = B_/u,:

1/2
AV, m ¢
=—, ﬂ = ’ BC —_ 0
iy ( ne? 14, J 23270

» Hence, we estimate the superheating field at T = 0 in the clean limit and « >> 1:



Proximity effect (deGennes, 1964)

= What happens if a normal metal is in contact
with a superconductor?

» |nduced superconductivity due to diffusion of the
Cooper pairs in a metal over the proximity length €, :

W(X) = Weexp(-x/E,)

= Suppression of y(x) near the surface of the S layer.

= Formulas for the proximity length:

1/2
= Atlow T the proximity length £ = hv £ _[ hv| ]
can be greater than N _thl_ckness: n 27k T : n 67k, T

N layer becomes proximity coupled

clean metal, | >> &, dirty metal, | << &,

Example: would a 1um Cu precipitate in a Nb cavity at 2K be superconducting or normal?
clean Cu: vp = 1.6x106 m/s, £, = 0.6 um (nearly SC). Dirty Cu: £, << 1 um (normal)



Critical currents of SNS contacts

= Maximum J in the middle of the N layer where vy is
S minimum

= Take the GL expressions for J and vy, :

2
7 = ¥l S0 enp| G
T 27Alu, Vim =" &P 73
suppression d f
E—— | where q ~ 21/, of yat S-N ega)t/ho
interface wintne
N layer

= Critical current density of a proximity coupled SNS contact:

.& d = J, drops exponentially with d, but
Je : S eXp| - —— increases exponentially as T decreases
Moo A &,

= J.oc (T,—T)>near T,
Weak superconductivity due to tunneling of Cooper pairs through N layer

U




Josephson effect (Php thesis, 1962, Nobel prize, 1973)

= Tunneling between 2 weakly coupled
superconductors strongly depends on

the phase difference: 6 = 0, - 0,
P, = n%exp(i,)

W, = nY2exp(iog) 1. dc Josephson current
Conducting

band Conducting Jd=J sn @
band ¢

5 2. Josephson voltage:

|
e do _ 2ev
e dt 7

3. Oscillating Josephson current at a

Because of the phase coherence, each fixed voltage V:
superconductor behaves as a single-

level quantum-mechanical system J(t) = J.sin ( 2 eVt N Hoj




Josephson vortices in long junctions

A;
> l Ferrell-Prange equation for the phase
difference 6(x) on a long JJ

A
°0+7,.0=250"-sné6

Model of planar crystalline defects:
grain boundaries, etc.

= New length scale: Josephson magnetic penetration depth:

1/2
— ( 2 ] Because J, is small, A is
J
c

Amu, 1] usually much greater than A

0/2n

= Josephson vortex: a long current loop along a JJ:

J

0(x) =4tan™ exp(— ;J



Type-| and type-Il superconductors

= Measurements of magnetization M(H) have shown a partial Meissner
effect in many superconducting compounds and alloys (Shubnikov, 1935).

-M -M New physics
or dirt?
0 H. H 0 He Ho, H
Complete Meissner effect High-field partial Meissner effect
in type-I superconductors In type-Il superconductors

= Type-l: Meissner state B = 0 for H < H_; normal state at H > H_
Type-Il: Meissner state (H < H_,), partial flux penetration (H., <H <H_,), normal state (H > H_,)

Lower and upper critical fields H,, and H_,.
High field superconductivity with H_, ~ 100 Tesla



Upper critical field H,,

= For a uniform field H along the z-axis, the GL equation for small y is:

§°Viy +[1-(27Bx § 1¢,)°ly =0

= Similar to the Schrodinger equation for a harmonic oscillator:

MaFx’ n

7 2" HE
— Vy+(E—)w=0: — &, E— Ma—
N w+( 5 W N c 1

= The oscillator energy spectrum E = 2@(n + %) for n = 0, then gives H_, below which
bulk superconductivity exists (surface SC can exist at even higher H_; = 1.69H_,)

B (T)= ¢0 — ¢0 1_l
(M) 2w T

c




How can H_, be higher than H_?

(2 [
B, = , B, =0
NP 7V <2

= Type-l superconductors: B> B, or k=2 < 1A2; mostly simple metals
= Type-ll superconductors: B_.<B_, or x=2A&> 1A/2 : 100 (HTS), 40 (MgB,)
= Marginal type-ll superconductor: Nb, x = 1.

= |n many type-Il superconductors the GL parameter k = A/ can be increased by alloying
with nonmagnetic impurities.

Dirty SC with the electron mean-free path /<&, : the penetration depth A = A,(E,/¢)"?
increases as # decreases, but the coherence length & = (§,¢)Y? decreases as ¢ decreases.
Thus, H, does not change, but H_, increases proportionally to the residual resistivity p

B., = P [1—Ljoc p




Vortex lattice at H.,;, <H < H_, (Abrikosov 1956, Nobel prize, 2003)
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* Hexagonal lattice of vortex lines, each carrying the flux quantum ¢,
» Vortex density n(B) = ¢,/B defines the magnetic induction B
* Spacing between vortices: a = (¢,/B)"?

numerical solutions of the GL equations




Type-Il superconductors

&

|

hagnetic Field

|
(b) J1\ /

Mieissner stabe

/N 71N

Main thermodynamic parameters of type-Il superconductors:

Temperature

1. Critical temperature, T,
2. Lower critical field H,

3. Upper critical field H,

Periodic hexagonal lattice of quantized vortex filaments at H,; <H <H,



Single vortex line

y
:

= Small core regionr <¢§
where superconductivity is
suppressed by strong circulating
currents

= Region of circulating
supercurrents, r <A.

A(r) = I = 9, : . 1I%ach vortex carries the
27U AT ux quantum ¢,




Decoration image of a vortex “polycrystal”

Crystalline parts Plastically deformed parts

Magnetic
decoration was
introduced by
Essmann and
Trauble, who
were the first to
observe vortex
lattice, 1967

Nb,Se

Pardo et al, 1998




Weak pinning of the vortex lattice in Nb

Lorentz electron microscopy
of vortices in Nb film
A. Tonomura et al, 1999.

Ideal hexagonal vortex lattice
between the pins (30 nm nanodots
produced by FIB)

Plastic deformation of the
vortex lattice by current

Vortex “rivers” flowing between
the pins for J > J,

J. = 0if the vortex lattice melts




Why are vortices energetically favorable?

= Each vortex carries the paramagnetic flux quantum, so its thermodynamic potential G in a

magnetic field H is reduced by H¢,:

G=€e-Hg,,
Vortex self Magnetic
energy dipolein field

= Vortices are energetically favorable for G <0, above the lower critical field H_, = €/,

£= ij[f(vs)z +B?]dS

2, /

Kinetic energy
of supercurrents

N

Energy of
local fields

= Detailed calculations with the account of the vortex core structure give:

48

cl

) A

|

Ini+Q

4

:

H. ~ HJ/x ~ Ho/x? thus
Hy <<H.<<H,for x>>1




Interaction between vortices

= Energy of two vortices

U =¢—2°[H ()+HI),  HE)=H,+Hu(R)

H, is the self-field in the core, H,,(R ) is the field produced at
the position of the other vortex:

= |nteraction energy U,(R) = ¢,H,,(R) and force f = - dU/oR:

2 R oH
U= 2€+¢0H12(R)’ Uint - Zﬂflo 7 KO(I} fy =_¢o aRlz =¢0Jx
0

= Vortices repel each other, vortex and antivortex attract each other .
= General current-induced Lorentz force acting on a vortex

re - A * vortex is pushed perpendicular to the local
f — ¢0[\] X n] current density J at the vortex core



Intermediate fields, H,, << H << H,

« Fora<<A,andk>> 1, the field H(B) and the magnetization M(H) are

Ha2 g H, MBelB) oy oy IN(He/H)
Ho 2Inx 2Inx
Superconductivity disappears at B, = ¢,/2n&? Very weak

because nonsuperconducting vortex cores overlap - M | dissipation

//I

: Strong vortex
1 . .

, dissipation

Material | T (K) | H.(0) | H:(0) | H.»(0) |A(0)

[T] [T] [T] [nm]
Pb | 7.2 | 008 | na na 48 0 Hy He  Hep H
Nb 9.2 0.2 0.17 0.4 40 B
NbSn | 18 | 054 | 005 | 30 85

NbN 16.2 0.23 0.02 15 200

MgB, 40 0.43 0.03 3.5 140

YBCO 93 1.4 0.01 100 150




Surface barrier: How do vortices penetrate at H > H_,?

J
R I = Two forces acting on the vortex at the surface: !
HO
» Meissner currents push the vortex in the bulk

» Attraction of the vortex to its antivortex image
r pushes the vortex outside

image I
loensure fepy .
1
A . .
Thermodynamic potential G(b) of the vortex: ®
G
. _b/ A B
G(b) —¢0[Hoe o Hv(%)+ Hcl o Ho]
H < Hcl M eissner | mage
b Vortices have to overcome the surface barrier

even at H> H_, (Bean & Livingston, 1964)

Surface barrier disappears only at the
overheating field H = H




Grain boundaries as gates for penetration of the

Josephson vortices
E(x,t)

d »
<« »

= Reduction of the surface
barrier by grain boundaries

= Pento-oxides (5-10 nm)

= RF field penetration

depth A =40 nm defines Ry

Heat Flux 0.1-1 um
- M = Heat transport through cavity
wall ~ 3mm and the Kapitza

thermal resistance

COOLANT




Lorentz force and motion of vortices

= Viscous flux flow of vortices driven by the Lorentz force
20000 O,

00000
oo deoeooe

X - e.a-
.::::@ @

77\_/’ = ¢O[jx ﬁ], E = [\7)( é] Faraday law

This yields the liner flux flow E-J dependence:

eeooo0e0
eofpoo
XX XX &

Volume fraction
- - of normal vortex
E=pJ, Pr =PBIB; | cores

Vortex viscosity m is due to dissipation in the vortex core
and can be expressed in terms of the normal state resistivity p,:

N 77=¢oBc2/pn
FF

For E = 1uV/cm and B = 1T, the vortex velocity

v=E/B=0.1 mm/s



Penetration of vorticesthrough the oscillating surface
barrier

b [ +E
2, A2 A

H .
nu: ¢O 0 e_U/;tS”']aI—

Nonlinear dynamic ODE
in the high- x London
approximation

» Onset of vortex penetration
B, = ¢,/41TAg = 0.71B,

» Vortex relaxation time constant:
T = puA°B,/Bp, ~ 1.6x10%% s
for Nb,Sn, p, = 0.2 uQm, B, = 23T,
B, = 0.54T, A =65 nm




How fast can vortices penetrate when breaking
through the surface barrier?

= Maximum Lorentz force at the superheating field ~
balanced by the viscous drag force: 77Vm ¢0 H S / /1

= Maximum vortex velocity:

v = Pub
U N’

= For Nb: A~ & =40nm, p, = 10° Qm, we obtain v ~ 10 km/s, greater than the
speed of sound !

= Strong effect of local heating



Pinning and superconductivity at H > H_,

Maoving vortex |attice Point defect
. pinning _
E
e
g l'*
' o
4 -
F
par
J. J
" Balance of the volume Lorentz and pinning BJC(T’ B) = Fp(T, B)
forces defines the critical current density J,
. Ideal crystals without defects have finite flux flow

resistivity and partial Meissner effect

. Defects pin vortices restoring almost zero resistivity
for J smaller than the critical current density J.

= Unlike the thermodynamic quantities (T H,,, H,,).
J. Is strongly sample dependent.




Core pinning

2\

A

v
|

Nonsuperconducting precipitates, voids, etc.
=  Columnar defects (radiation tracks, dislocations)

=  (Gain of a fraction of the vortex core line energy,
g, = mEWL H /2, if the core sits on a defect

Pinning energy U and force f for a columnar pin of radius r:

2
I I
Ungof—z’ fpz2€0§—2, I’<<§,
< > 50
Ungo, fpzr—, I’>§
2 U = Forr<<Eg, only asmall fraction of the core

r X energy is used for pinning, f is small
Columnar —\ f = Forr>>¢, the whole g, is used, but the
pin ;U | \ maximum pinning force f; ~/r is small

p




Optimum core pin size and maximum J_

fp
" Because f(r) is small for both r << Eandr<<g,
the maximum pinning force occurs atr = €.
= The same mechanism also works for precipitates.
i ' What is the maximum J, for the optimum columnar pin?
fo(S)
= Optimum pin allows to reach the J o = P = % >=Jy
depairing current density! @ 871 A
Core pinning = Core pinning by small precipitates
by a planar defect of size = £ yields smaller J_ reduced by
of thickness = £ is the factor = r/l, (fraction of the vortex

also very effective length taken by pins spaced by | )




yii

Magnetic pinning

= Planar defects: grain boundaries in polycrystals (Nb,Sn) or o.-Ti ribbons in NbTi
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Distancel from the vortex core
at which J(I) equals J, of the defect
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® Djstortion of vortex currents:

attraction to an image similar to
that of the vortex at the surface

L T

= Distance | of strong
interaction: f(X)= ¢,?/2mt,A%X

J(y==2e 3, 5 | P9

2mu (A B 2mu JA%D,

= Abrikosov vortex with normal core turns into a mixed Abrikosov vortex with
Josephson core: Pinning defect can radically change the vortex core structure

= Magnetic pinning by a thin insulating defect (d < &) can result in a very high J, ~ J !



