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History

Hg

Discovered in 1911 by Heike Kamerlingh Onnes
and Giles Holst after Onnes was able to liquify
helium in 1908. Nobel prize in 1913 



Meissner effect and critical field

Key experimental facts

1. Magnetic field is expelled from
a superconductor (Meissner effect, 1933).

2. Superconductivity is destroyed 
by magnetic field H > Hc(T)

3. Thermodynamic critical 
magnetic field Hc(T).

4. Empirical formula:

Hc(T) = Hc(0)[1 – (T/Tc)2]
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Complete magnetic 
shielding by circulating 
surface supercurrents

Zero resistivity at T < Tc results from
a phase transition to the new 
superconducting state



The key difference between superconductors and 
perfect normal conductors 

superconductor

magnet

Levitation of a magnet 
over a superconductor 

a superconductor expels dc 
magnetic flux

behavior of good normal 
metals and superconductors 
is similar in ac magnetic fields   

Normal metal: not a phase transition 
but the infinite relaxation time constant 
τ = L/R (ideal skin effect)



London equations (1935)

Two-fluid model:  coexisting SC and N 
“liquids” with the densities ns(T) + nn(T) = n. 

Electric field E accelerates only the SC 
component, the N component is short circuited.

Second Newton law for the SC component: 
mdvs/dt = eE yields the first London equation:

dJs/dt = (e2ns/m)E J = σE

(ballistic electron flow in SC)                                 (viscous electron flow in metals)
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Using the Maxwell equations,  ∇× E = -μ0∂tH  and  ∇× H = Js
we obtain the second London equation:

λ2∇H - H = 0

London penetration depth:
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London equation explains the Meissner effect
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magnetic field penetration into a slab:
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B = 0

Screening surface current density Js(y):

Supercurrents completely screen the external field H0
Meissner effect: no magnetic induction B in the bulk.
Surface current density cannot exceed the depairing
current density Jd:
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Superconducting current, order parameter and phase coherence 

All superconducting electrons are paired in a coherent quantum state 
described by the  macroscopic complex wave function   Ψ = (ns/2)1/2exp(iθ)
The same phase θ for all superconducting electrons.
Phase gradient ∇θ results in a superconducting current J = -(ehns/m)∇θ !

Phase gradient in a magnetic field (see Feynman’s lectures, vol. 2)

Superconducting current density

eqA
q

2, =+∇→∇
r

h
θθ Cooper pairs!

||
,

2
1

0
0

0
2 e

AJs

hrr πφθ
π
φ

μλ
=⎟

⎠
⎞

⎜
⎝
⎛ +∇−=

Magnetic flux 
quantumDiamagnetic

minus



What is the phase coherence?

Incoherent (normal) crowd: 
each electron for itself 

Phase-coherent (superconducting) condensate
of electrons



Magnetic flux quantization

What magnetic flux Φ = ! BdS can be trapped in a hollow cylinder?

Integrate Js along the contour l in the bulk, where Js =0:

Use the Gauss theorem: Φ = ! ∇×AdS = % Adl, and the 
fact that the wave function Ψ = (ns/2)1/2 exp(iθ) must be 
single valued, % ∇θdl = ±2πn, n = 0, ±1, ±2 … .  Hence,
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Quantized flux (London, 1950; Deaver and Fairbank, 1961) is a trademark of magnetic 
behavior of superconductors (magnetic vortices, SQUID interferometers, etc.)
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Cooper pairs and the BCS theory of superconductivity

Cooper pair on the Fermi surface

Attraction between electrons with antiparallel
momenta k and spins due to exchange of lattice 
vibration quanta (phonons)

Instability of the normal Fermi surface due to 
bound states of electron (Cooper) pairs  

Bose condensation of overlapping Cooper 
pairs in a coherent superconducting state.

Scattering on electrons does not cause the electric 
resistance because it would break the Cooper pair

k

-k

Bardeen-Cooper-Schrieffer (BCS) theory (1957). 
Nobel prize in 1972

The strong overlap of many Cooper pairs 
results in the macroscopic phase coherence  



BCS theory (cont)

2Δ = 3.52kBTc,   Tc << TD ∼ 300K

Superconducting gap Δ on the Fermi surface

Critical temperature:  Tc≈ 1.13TDexp(-1/γ),
γ ≈ VNF = 0.1-1 is a dimensionless coupling
constant between electrons and phonons

Normal state for T > Tc

Superconducting state for T < Tc

For T=0, all electrons are bound in the Cooper pairs

For T<< Tc, a small fraction of electrons are unbound 
due to thermal dissociation of the Cooper pairs

nr(T) = n0(πT/2Δ)1/2exp(- Δ/T)

This normal fraction defines the small BCS 
surface resistance



Effect of current on thermal activation

2Δ - 2vpF 2Δ + 2vpF

Rocking “tilted” electron spectrum in the  
current-carrying rf state J = J0cosωt

Superfluid velocity vs(t) = J/nse
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Reduction of the gap Δ(vs) = Δ - pF|vs| in the electron spectrum increases the density 
of thermally-activated normal electrons nr(J), thus increasing Rs

Critical pairbreaking velocity:
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Problems with the London electrodynamics

the linear London equations 
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along with the Maxwell equations describe the electrdynamics of SC at all T if:

Js is much smaller than the depairing current density Jd
the superfluid density ns is unaffected by current

Generalization of the London equations to nonlinear problems

Phenomenological Ginzburg-Landau theory (1950, Nobel prize 2003) 

was developed before  the microscopic BCS theory (1957).

GL theory is one of the most widely used theories 



GL free energy

Complex superconducting order parameter Ψ = (ns/2)1/2exp(iθ) 

For T ≈ Tc , Ψ is small so the free energy can be expanded in the Taylor series in Ψ:
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The coefficient  α(T) = α0(T - Tc)/Tc changes sign at Tc

inhomogeneity magneticnonlinear

Normal state
T > Tc,  Ψ = 0

δF

Ψ

δF

Ψ
Ψ0

Superconducting state
T < Tc,  Ψ0 = (|α|/β)1/2



Equilibrium order parameter and Hc

Spontaneous order parameter Ψ0 = [ns/2]1/2 below Tc:    
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Energy gain defines the thermodynamic critical field Hc:
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GL equations for nonuniform Ψ(r) and A(r)

Energy minimization conditions δF/δΨ* = 0 and δF/δA = 0 yield the GL equations
for the dimensionless order parameter ψ = Ψ/Ψ0
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Two coupled complex nonlinear PDE for the pair wave function ψ(r) and the 
magnetic vector-potential A(r),   (B=∇×A).
Two fundamental lengths  ξ and  λ
Boundary condition between a superconductor and vacuum Js = 0:
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Fundamental lengths λ and ξ and the GL parameter κ = λ/ξ

Magnetic London penetration depth:
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Coherence length – a new scale of spatial variation of the superfluid density 
ns(r) or superconducting gap Δ(r):
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Depairing current density

What maximum current density J can a superconductor carry?
Consider a current-carrying state with ψ = ψ0exp (-iqx), in a thin  filament, where 
q is proportional to the velocity of the Cooper pairs.  The GL equations give: 
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Maximum J at  ξq = 1/√3 yields the depairing
current density:
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Paibreaking field instability of the Meissner state

λ

Meissner state can only exist below the superheating field H < Hs

Periodic vortex instability of the Meissner state as the current
density Js = Hs/λ at the surface reaches ª Jd

Hernandez and Dominguez, PRB 65, 144529 (2002)

GL calculations of the superheating 
field Hs (Matricon and Saint-James, 1967)
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Bs decreases as the surface gets 
dirtier and k increases.

Nb



Relation of Hs to the pairbreaking velocity

Estimate Hs at T=0 from the condition that the superfluid velocity reaches
the pairbreaking vc = D/pF at the surface

λ// sFs HpenJ =Δ=

Substitute here the BCS expressions for the coherence length ξ, London 
penetration depth λ, and the thermodynamic critical field  Hc = Bc/μ0:
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Proximity effect (deGennes, 1964) 

ψ

ξξn

x

N S

What happens if a normal metal is in contact
with a superconductor?

Induced superconductivity due to diffusion of the
Cooper pairs in a metal over the proximity length ξn:  

ψ(x) = ψ0exp(-x/ξn)

Suppression of ψ(x) near the surface of the S layer.

Formulas for the proximity length:  
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clean metal, l >> ξn dirty metal, l << ξn

At low T the proximity length 
can be greater than N thickness: 
N layer becomes proximity coupled

Example: would a 1μm Cu precipitate in a Nb cavity at 2K be superconducting or normal?
clean Cu: vF = 1.6×106 m/s, ξn = 0.6 μm (nearly SC).        Dirty Cu: ξn << 1 μm (normal)



Critical currents of SNS contacts

Maximum J in the middle of the N layer where ψm is 
minimum

Take the GL expressions for J and ψm :
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where q ~ 2π/ξn

suppression 
of ψ at S-N 
interface

decay of 
ψ in the 
N layer

Critical current density of a proximity coupled SNS contact: 
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Jc drops exponentially with d, but 
increases exponentially as T decreases
Jc ∝ (Tc – T)2 near Tc

Weak superconductivity due to tunneling of Cooper pairs through N layer



Josephson effect (PhD thesis, 1962, Nobel prize, 1973)

Tunneling between 2 weakly coupled 
superconductors strongly depends on
the phase difference: θ = θL - θR

gap
gap

Conducting
band Conducting

band

eV
eV

Δ
Δ

ΨL = ns
1/2exp(iθL)

ΨR = ns
1/2exp(iθR)

J

Because of the phase coherence, each 
superconductor behaves as a single-
level quantum-mechanical system  

θsincJJ =

1. dc Josephson current

2. Josephson voltage:
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3. Oscillating Josephson current at a 
fixed voltage V:
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Josephson vortices in long junctions

Ferrell-Prange equation for the phase 
difference θ(x) on a long JJ
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Model of planar crystalline defects: 
grain boundaries, etc.

New length scale: Josephson magnetic penetration depth:
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Type–I and type–II superconductors

Measurements of magnetization M(H) have shown a partial Meissner
effect in many superconducting compounds and alloys (Shubnikov, 1935).
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HHc0

Complete Meissner effect
in type-I superconductors

Type-I: Meissner state B = 0 for H < Hc; normal state at H > Hc

Type-II: Meissner state (H < Hc1), partial flux penetration (Hc1 < H < Hc2), normal state (H > Hc2)
Lower and upper critical fields Hc1 and Hc2.
High field superconductivity with Hc2 ∼ 100 Tesla
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Hc2Hc10 H

High-field partial Meissner effect
in type-II superconductors

New physics 
or dirt?



Upper critical field Hc2
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For a uniform field  H along the z-axis, the GL equation for small ψ is:

Similar to the Schrodinger equation for a harmonic oscillator:  
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The oscillator energy spectrum E = hω(n + ½) for n = 0, then gives Hc2 below which 
bulk superconductivity exists (surface SC can exist at even higher Hc3 = 1.69Hc2)
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How can Hc2 be higher than Hc? 
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Type-I superconductors: Bc > Bc2,  or   κ = λ/ξ < 1/√2:  mostly simple metals
Type-II superconductors: Bc < Bc2,  or   κ = λ/ξ > 1/√2 : 100 (HTS), 40 (MgB2)
Marginal type-II superconductor: Nb, κ ≅ 1.

Dirty SC with the electron mean-free path l < ξ0 :   the penetration depth λ ≅ λ0(ξ0/l )1/2

increases as l decreases, but the coherence length ξ = (ξ0l )1/2 decreases as l decreases.  
Thus, Hc does not change, but Hc2 increases proportionally to the residual resistivity ρ
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In many type-II superconductors the GL parameter κ = λ/ξ can be increased by alloying
with nonmagnetic impurities.



Vortex lattice at Hc1 < H < Hc2   (Abrikosov 1956, Nobel prize, 2003)

y

x

B(x,y)

• Hexagonal lattice of vortex lines, each carrying the flux quantum φ0

• Vortex density  n(B) = φ0/B defines the magnetic induction  B
• Spacing between vortices:   a = (φ0/B)1/2

numerical solutions of the GL equations



Type-II superconductors

Main thermodynamic parameters of type-II superconductors: 

1. Critical temperature, Tc

2.     Lower critical field Hc1 

3.     Upper critical field Hc2

Periodic hexagonal lattice of quantized vortex filaments at Hc1 < H < Hc2



Single vortex line

ψ

B

rξ λ

Small core region r < ξ
where superconductivity is 
suppressed by strong circulating
currents

Region of circulating 
supercurrents, r  < λ.

Each vortex carries the 
flux quantum φ0

Distributions of Δ(r ) and J(r) for r < λ
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Decoration image of a vortex “polycrystal”

Nb2Se
Pardo et al, 1998

Magnetic 
decoration was 
introduced by  
Essmann and 
Trauble, who 
were the first to 
observe vortex 
lattice, 1967

Crystalline parts Plastically deformed parts



Weak pinning of the vortex lattice in Nb

Lorentz electron microscopy 
of vortices in Nb film
A. Tonomura et al, 1999.

Ideal hexagonal vortex lattice 
between the pins  (30 nm nanodots
produced by FIB)

Plastic deformation of the 
vortex lattice by current

Vortex “rivers” flowing between 
the pins for J > Jc

Jc = 0 if the vortex lattice melts



Why are vortices energetically favorable?

Each vortex carries the paramagnetic flux quantum, so its thermodynamic potential G in a 
magnetic field H is reduced by Hφ0:
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Vortex self 
energy

Magnetic 
dipole in field

Kinetic energy
of supercurrents

Energy of 
local fields

Detailed calculations with the account of the vortex core structure give:
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Hc1 ∼ Hc/κ ∼ Hc2/κ2, thus 
Hc1 << Hc << Hc2 for κ >> 1

Vortices are energetically favorable for G < 0,  above the lower critical field Hc1 = ε/φ0
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Interaction between vortices

Energy of two vortices
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H0 is the self-field in the core, H12(R ) is the field produced at 
the position of the other vortex: 

Interaction energy Ui(R) = φ0H12(R) and force f = - ∂Ui/∂R:
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Vortices repel each other, vortex and antivortex attract each other . 
General current-induced Lorentz force acting on a vortex 
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Intermediate fields, Hc1 << H << Hc2

• For a << λ, and κ >> 1, the field H(B) and the magnetization M(H) are   
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Superconductivity disappears at Bc2 = φ0/2πξ2

because nonsuperconducting vortex cores  overlap

Material Tc (K) Hc(0) 
[T]

Hc1(0) 
[T]

Hc2(0) 
[T]

λ(0) 
[nm]

Pb 7.2 0.08 na na 48

Nb 9.2 0.2 0.17 0.4 40
Nb3Sn 18 0.54 0.05 30 85

NbN 16.2 0.23 0.02 15 200

MgB2 40 0.43 0.03 3.5 140

YBCO 93 1.4 0.01 100 150

Hc2Hc10 H

Strong vortex 
dissipation

Hc

Very weak 
dissipation- M



Surface barrier: How do vortices penetrate at H > Hc1?

Two forces acting on the vortex at the surface:

Meissner currents push the vortex in the bulk
Attraction of the vortex to its antivortex image 
pushes the vortex outside  
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H = Hc

b

G

Thermodynamic potential G(b) of the vortex:

Meissner Image

Vortices have to overcome the surface barrier 
even at H > Hc1 (Bean & Livingston, 1964)

Surface barrier disappears only at the 
overheating field H = Hs



Grain boundaries as gates for penetration of the 
Josephson vortices

E(x,t)

l

COOLANT

∼0.1-1 μm

λ

Heat Flux

λJ

Reduction of the surface 
barrier by grain boundaries

Pento-oxides (5-10 nm)

RF field penetration 
depth  λ = 40 nm defines Rs

Heat transport through  cavity 
wall ∼ 3mm and the Kapitza
thermal resistance



Lorentz force and motion of vortices

Viscous flux flow of vortices driven by the Lorentz force
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Vortex viscosity η is due to dissipation in the vortex core 
and can be expressed in terms of the normal state resistivity ρn:
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For E = 1μV/cm and B = 1T, the vortex velocity 

v = E/B = 0.1 mm/s
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This yields the liner flux flow E-J dependence:  
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Volume fraction 
of normal vortex 
cores



Penetration of vortices through the oscillating surface 
barrier
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Nonlinear  dynamic ODE 
in the high- k London 
approximation

• Onset of vortex penetration  
Bv ª φ0/4πλξ = 0.71Bc

• Vortex relaxation time constant: 
t = m0l2Bc2/Bvrn ª 1.6â10-12 s
for Nb3Sn, rn = 0.2 mΩm, Bc2 = 23T, 
Bc = 0.54T, λ = 65 nm



How fast can vortices penetrate when breaking 
through the surface barrier?

λφη /0 sm Hv ≈Maximum Lorentz force at the superheating field
balanced by the viscous drag force:

Maximum vortex velocity:

2
02 λμ
ξρn

mv ≈

For Nb: λ ª ξ = 40 nm, ρn = 10-9 Ωm, we obtain vm ∼ 10 km/s, greater than the 
speed of sound !

Strong effect of local heating 



Pinning and superconductivity at H > Hc1

E

JJc

Ideal crystals without defects have finite flux flow 
resistivity and partial Meissner effect

Defects pin vortices restoring almost zero resistivity
for J smaller than the critical current density Jc

Unlike the thermodynamic quantities (Tc Hc1, Hc2),  
Jc is strongly sample dependent. 

Balance of the volume Lorentz and pinning 
forces defines the critical current density Jc

),(),( BTFBTBJ pc =

B/Bc2
1

Fp

Jc



Core pinning

2ξ

2λ Nonsuperconducting precipitates, voids, etc.
Columnar defects (radiation tracks, dislocations)

Gain of a fraction of the vortex core line energy,  
ε0 = πξ2μ 0Hc

2/2, if the core sits on a defect

2ξ

2λ

Columnar
pin

Pinning energy Up and force fp for a columnar pin of radius r:
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0

U For r << ξ, only a small fraction of the core 
energy is used for pinning, fp is small

For r >> ξ, the whole ε0 is used, but the 
maximum pinning force fp ∼ ε0/r is small

r x

Up



Optimum core pin size and maximum Jc

fp

rξ

Because fp(r) is small for both r << ξ and r << ξ, 
the maximum pinning force occurs at r ≅ ξ.

The same mechanism also works for precipitates.

d
p J

f
J ≅=≅ 2
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0

0
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φ

φ
ξ

What is the maximum Jc for the optimum columnar pin?

Optimum pin allows to reach the 
depairing current density!  

Core pinning by small precipitates 
of size ≈ ξ yields smaller Jc reduced by 
the factor  ≈ r/lp (fraction of the vortex 
length taken by pins spaced by lp)  

Core pinning 
by a planar defect 
of thickness ≈ ξ is 
also very effective



Magnetic pinning
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Distance l from the vortex core 
at which J(l) equals Jb of the defect

Abrikosov vortex with normal core turns into a mixed Abrikosov vortex with 
Josephson core: Pinning defect can radically change the vortex core structure

Magnetic pinning by a thin insulating defect (d < ξ) can result in a very high Jc ~ Jd!

Planar defects: grain boundaries in polycrystals (Nb3Sn) or α-Ti ribbons in NbTi

Distortion of vortex currents:
attraction to an image similar to
that of the vortex at the surface

Distance l of strong 
interaction: f(x)= φ0

2/2πμ0λ2x
l


