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Basics of Superconducting RF

J. Knobloch, BESSY 
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Overview

• What is the theoretical behavior of superconducting RF cavities?

• Short introduction to RF cavities (details in Tutorials 2a/b)

• Need some „tools“ to characterize their performance/losses
• Figures of Merit:  Surface resistance, Q-factor, shunt impedance ...

• RF losses for normal and superconductors: theoretical behavior

• Use the Figures of Merit to understand the impact of losses on RF cavities

• Cavity losses: measured behavior, how to improve them

• Fundamental field limits of superconducting cavities (practical limits in Tutorial 4b)

• Note:  Throughout will calculate examples
• Always use a 1.5 GHz pillbox cavity
• Superconductor:  always bulk niobium (Other materials/thin films to Tutorial 6a/b)
• Some equations, most you can forget again.  Important ones are marked in yellow
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Making a cavity

• For acceleration we require an oscillating RF field

• Simplest form is an LC circuit

• Let L = 0.1 mH, C = 0.01 µF Æ f = 160 kHz

• To increase the frequency, lower L, eventually only have a single wire

• To reach even lower values must add inductances in parallel

• Eventually have we have a solid wall

• Shorten „wires“ even further to reduce inductance

• Æ Pillbox cavity, „simplest form“

• Add beam tubes to let the particles enter and exit

• Magnetic field concentrated in the cavity wall,
losses will be here.
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Cavity Modes

• Fields in the cavity are solutions to the wave equation

• Subject to the boundary conditions

• Solutions are two families of modes with different eigenfrequencies
• TE modes have only transverse electric fields
• TM modes have only transverse magnetic fields (but longitudinal component for E)

• TM modes are needed for acceleration.  Choose the one with the lowest frequency (TM010)• For pillbox (no beam tubes) solution is:

• Note that the frequency scales inversely with the linear dimension of the cavity (call this „a“)
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Cavity Fundamentals

• Optimizing Cavity Length
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E.g.: For 1.5 GHz cavity and speed of light electrons (ß = 1), Lacc = 10 cm
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Figure of Merit:  Accelerating Voltage and peak fields

• How much energy gain can we expect?  

• Integrate the E-field at the particle position as it traverses the cavity:

• For the pillbox cavity this is

• We can define the accelerating field as

• Important for the cavity performance is the ratio of the peak fields to the accelerating field.

• Ideally these should be relatively small to
limit losses and other trouble at high fields

(assume speed of light electrons)
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Power dissipation in a cavity

• Tangential magnetic fields exist at the cavity wall

Æ By Maxwell‘s equation currents must flow.

• Current density is proportional to the magnetic field

• If the material is lossy, this will lead to power dissipation
• (one reason why one may want a low ratio of magnetic field to accelerating field)

• By Ohm‘s law one can define a surface resistance such that the power dissipated per unit
area is given by:

• The total power dissipated in the cavity is given by the integral over the surface:
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Figure of Merit: Cavity Quality

• How does this compare to the energy stored in the cavity?

• Define the cavity quality as:

• (Note:  Easy quantity to measure.  Just fill the cavity with energy, switch off and count the
number of cycles it takes to dissipate the energy)

• The stored energy is:

• Hence

• Note that

• And hence

where G is the geometry factor which only depends on the cavity shape!
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• The cavity quality:  useful value for the performance of the cavity, measures how lossy the
cavity material is

• But really we want to know how much power is dissipated to accelerate the charges. 

• Hence one defines a shunt impedance:

• The higher the shunt impedance, the more acceleration we get per watt of dissipation

• A very useful quantity is generated by dividing by the quality factor:

• Why?  Because

• Pillbox:  
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Figure of Merit:  Shunt Impedance
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Comparison Superconducting and Normal Conducting Cavities

• Lets calculate one example:  Want to operate a 1.5 GHz Pillbox at 1 MV
• For copper at 1.5 GHz, Rs = 10 mΩ
• For SC niobium at 1.5 GHz, Rs = 10 nΩ (discussed later)

• Recall:
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Æ For Cu: Q0 = 25700  For Nb: Q0 = 2.57 x 1010

Æ For Cu: Pdiss = 200 kW,  For Nb: Pdiss = 200 mW! 
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For copper cavities, power dissipation is a huge constraint
Æ Cavity design is driven by this fact

For SC cavities, power dissipation is minimal
Æ decouples the cavity design from the dynamic losses
Æ free to adapt design to specific application

For a clock pendulum (1 sec): 815 years!
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Difference between NC and SC cavities

• NLC design developed to reduce power dissipation to a minimum

• But many other areas are impacted in a negative way
• E.g., Æ Strong wakefields are createdÆ impact beam dynamics
• Small sizeÆ extremely tight tolerances

• TELSA design

• Power dissipation less critical
• Æ Choose design that relaxes wakefields
• Still: heat is deposited in LHeÆ cost issue that must be understood

NLC TESLA



J. Knobloch, SRF 2007 12

What comes now

• Clearly, cavity losses strongly impact the design/operation of the cavity

• Will analyze the behavior of normal-conducting and superconducting RF losses

• Look at scaling laws: frequency, temperature, material purity …

• Then turn to the real world, look at deviation from the ideal
• Residual losses
• Trapped magnetic flux
• The Q-disease

• How far can we push a superconducting cavity?

• Theoretical Limit of superconductors
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Calculating RF losses in a conductor

• For simplicity, use the nearly-free electron model

• Losses given by Ohm‘s law

• The electrons have a time τ between scattering events to gain energy

• In a cavity, the magnetic field drives an oscillating current in the wall
• Æ Start with Maxwell‘s equations

• Combine the two and take the exp(iωt) dependence into account

• Look at a typical copper RF cavity:
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Field near a conductor

Consider now a uniform magnetic field (y-direction) at the surface of a conductor.

Solving

yields

where the field decays into the conductor with over a skin depth of

Similarly, from Maxwell find that
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Cavity losses due to the RF field

• The losses per area are simply

• Note:  Surface resistance is just the real part of the surface impedance:

( ) )4/exp(1
1 π

σ
ωμ

σ
μπ

σδ
i

f
i

i

H

E
Z

y

z
s =+=+==

∫∫
∞

=

∞

=

==′
0

2

0

*
diss 2

1

2

1

x

z

x

zz dxEdxEJP σ

σ
μπ

σδ
f

Rs == 12
02

1
H

σδ
= 2

02

1
HRs=

• Plug in some numbers:

• Copper: f = 1.5 GHz, σ = 5.8 x 107 A/Vm, µ0 = 1.26 x 10-6 Vs/Am
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• Note that for , the surface resistance scales as  

• Recall so that also scales with

• But consider the total power dissipation for the RF-cavity installation (e.g., linac):
• For a total voltage Vt, we need N = Vt/Vc cavities
• Thus the total power dissipation is

• Since

• The total power dissipation scales as:
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Two fluid model, must consider both sc and nc components:

• Below Tc superconducting cooper pairs are formed with an energy gap 2Δ
• The density of remaining „normal“ electrons is given by

• DC case:  The lossless Cooper pairs short out the field

Æ the normal electrons are not accelerated

Æ the SC is lossless even for T > 0 K

Losses in a superconductor: Two-fluid model
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Losses in a superconductor: RF case

• What‘s different for the RF case?

• Cooper pairs have inertia!

Æ they cannot follow an AC field instantly and thus do not shield it perfectly

Æ a residual field remains

Æ the normal electrons are accelerated and dissipate power

• Scalings of the surface resistance:

• The faster the field oscillates the less perfect the shielding

Æ We expect the surface resistance to increase with frequency

• The more normal electrons exist, the lossier the material

Æ We expect the surface resistance to drop exponentially below Tc
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Acts as the AC conductivity of 
the superconducting fluid.  
„Collision time“ is the RF 
period.

• Calculate surface impedance of a superconductor

Æ Must take into account the „superconducting“ electrons (ns) in the 2-fluid model

• For these there is no scattering

• Thus:

• In an RF field with exp(iωt) dependance

or

• Total current:  Just add the currents due to both „fluids“: 
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Surface impedance of superconductors

• Thus, the treatment with a superconductor is the same as before, only that we have to 
change:

• Impedance

• Penetration depth

• Where

• Note that 1/ω is of order 100 ps whereas for normal conducting electrons τ is of order few
10 fs.  Also, ns >> nn for T << Tc.  Hence

• As a result one finds that:

• Again, the field decays rapidly but now over the London penetration depth
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Surface impedance of superconductors

• For the impedance we get:

• Lets look at some numbers:

For niobium λL = 36 nm, for Copper the penetration depth was 1.7 µm (@ 1.5 GHz)

Æ The field penetrates over a much shorter distance than for a normal conductor

• At 1.5 GHz: Χs = 0.43 mΩ, whereas Rs is < 1µΩ
Æ The superconductor is mostly reactive in line with our previous explanation of losses in a 
superconductor

⎟
⎠
⎞⎜

⎝
⎛ +≈ iZ

sσ
σ

σ
ωμ

2
n

s
s L0s λωμ=Χ 3

L
2
0

2
ns 2

1 λμωσ=R

Surface resistance of the
superconductor



J. Knobloch, SRF 2007 22

Frequency scaling of the surface resistance

• Note

Æ The surface resistance scales quadratically with frequency, also in agreement with our
previous analysis

• Recall that the total dissipated power for all accelerating cavities was given by

• Hence for a superconductor

Æ Favors low-frequency cavities if cryogenic power is an issue.
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Temperature scaling of the surface resistance

• The surface resistance is proportional to the conductivity of the normal fluid!

Æ If the normal-state resistivity is low, the superconductor is more lossy!

• Explanation:  For „residual“ field not shielded by the Cooper pairs more „normal 
current“ flowsÆ more dissipation

• Temperature dependance:  Below Tc, electrons condense into the superconducting state.

• In the previous tutorial we saw for the normal fluid:

Æ Conductivity is

• Hence the SC surface resistance is given by
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Scaling of the surface resistance

The surface resistance
• Increases quadratically with frequencyÆ use low frequency cavities

• Decreases exponentially with temperatureÆ stay well below Tc

• Increases with increasing purity of the material Æ use impure materials
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No!  This statment breaks down for very
impure SC + there are compelling
arguments to use high-purity material
(see later and turorial 4b!)
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Frequency scaling

• Measurements at 4.2 K and 1.8 K confirm the frequency dependance.

• Slight deviation at high frequencies due to anisotropy of niobium

Quadratic dependance

U. Klein, Thesis, Wuppertal Univ., WUB–DI 81–2 (1981)
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Temperature scaling

• Exponential dependance confirmed experimentally

• Measure Q factor of a cavity v. temperature

• Calculate surface resistance = G/Q0

H. Padamsee et. al, Cornell
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Impact of the purity of the superconductor

• Surface resistance decreases as the mean free path decreases (less pure)

• This is only valid as long as the coherence length is << mean free path

• Otherwise the first London equation (local equation) breaks down.  

• In that case must replace: 

• And thus the surface resistance increases when
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Impact of purity of superconductor

• Measurements have confirmed the general dependance on purity

• Sputtered niobium on copper

• By changing the sputtering species, the mean free path was varied (see Tutorial 6 (?))

C. Benvenuti et. al, Physica C 316 (1999)
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Calculating the surface resistance

3000 MHz

• Clearly, absolute calculation of surface resistance must take into account numerous
parameters.

• Mattis & Bardeen developed theory based on BCS: „involves many tricky integrals“HSP

• Approximate expression for Nb:

• Program written by J. Halbritter to calculate resistance under wide range of conditions
(J. Halbritter, Zeitschrift für Physik 238 (1970) 466)

• At Cornell: SHRIMP

• Must only supply a minimum number
of parameters

• Effect of material purity included

• Frequency dependance calculated
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H. Lengeler et al., IEEE Trans. Magn MAG 21 1014



J. Knobloch, SRF 2007 30

Measured surface resistance

• Measured cavities display a behavior similar to the theoretical surface resistance

• Thus lowering the temperature further
should always improve the dynamic losses

• But eventually the effect saturates

• Temperature independent term is
called Residual Resistance

What is happening here?!

1 - 20 nOhm

H. Padamsee, Supercond. Sci. Technol. 14 (2001) R28–R51
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Pause
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Sources of residual resistance: Trapped flux

• Theory:  Below Hc1, a superconductor always is in the Meissner State

• Reality: Nb „traps“ entire field if < 0.3 mT (even for high purity Nb)
• ÆEarths field (50 µT) would be completely trapped.

• The field penetrates the wall in „fluxoids“ of flux and normal conducting area

• The RF field „tugs“ on the fluxoids and because of their motion
a current flows through the normal conducting region

• Total area of the NC region = number of fluxoids x AΦ.

• Number of fluxoids:

Æ Fraction of surface in nc state = 

Æ Effective surface resistance due to trapped flux is: 
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Trapped flux

• From the BCS theory we have:

• So that the contribution from trapped flux is simply:

• Note:
1.Normal surface resistance scales as √f
Æ resistivity due to flux trapping increases with frequency

2.Resistivity decreases with increasing critical field
Æ Thin film superconductors (which have a much higher critical field) are less susceptible to 
trapped flux.  

• Some values:  For Nb, Bc2 = 240 mT,  at 1.5 GHz and 10 K, Rn ≈ 1.8 mΩÆ RΦ = 3.75 nΩ/µT

• In general (for Nb) 
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Trapped flux due to earth‘s field

• Earth‘s field is 50 µT

Æ Residual resistance (at 1.5 GHz) is = 175 nΩ
• Hence for a pillbox cavity Q0 < 1.5 x 109

Æ To achieve Q factors in the 1010 range, the earth‘s field must be shielded by at least a 
factor 10 – 20.

• Use µ-Metal for shielding

• + MAKE SURE NO MAGNETIC MATERIALS ARE NEAR THE CAVITY

• + Don‘t turn nearby magnets on until the cavity is superconducting
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Cavity with trapped flux

BCS Resistance + 
resistance due to 
trapped
flux (1,25 µT)

Æ Shielding was about a factor 40
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Generation of trapped flux

• Sometimes, during cavity tests, one observes a quench

• Cavity is heated locally above Tc due to
• Defects on the surface
• Electron bombardment from field emitters
• Electron bombardment due to multipacting

• When the heating becomes to strong it drives the cavity normal conducting

• After the quench the Q-factor often is reduced

Details are covered in Tutorial 4b
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Generating trapped flux

• Perform measurements of the surface resistance in the region of the quench (with thermometry)

• After the quench, the surface resistance increased in this region

• Raising the temperature above Tc eliminates the additional resistivity

• Explanation:  During the breakdown there is a large temperature gradient

• This creates a thermocurrent (Seeback effect) and hence a magnetic field

• As the cavity cools, the flux is trappedÆ additional losses

• Warming the cavity above the critical temperature releases the flux

• Typical values:
• Temperature gradient = few K/cm
• Electrical resistivity of Nb: order 0.06 µΩ cm
• Thermopower = order 0.1 µV/K (??)
Æ current density is of order 3 A/cm2 and magnetic flux of order 200 µT

Æ Resistance due to trapped flux of order 100s of nΩ (not an accurate calculation)

rthermopowe   , =∇= TT STSE

Initially

After quenchWarm to 8 K

Warm to 11 K

New quench
Temperature map during quenchRatio surface resistance after quench to before
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The Q disease

• In the 80‘s and early 90‘s it was found that sometimes a good cavity
could go „bad“ when tests were repeated.

• This was especially the case when cavities were installed in 
„real“ accelerator modules

• This became known as the Q-disease

• What follows are some of the observations
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Losses due to hydrides:  The Q disease
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Q
 drops further Q drops further  with field

1st cooldown, vertical cavity test in a dewar (cooldown > 1 K/min)

For real accelerator modules have to cool
slowly to avoid thermal stresses between components.

B. Aune et. al

Q0

B. Aune et. al, Proc. 1990 Linac Conference,
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Distribution of losses

Increased surface resistance is uniformly distributed (losses proportional to H 2)

Analyze loss-distribution using thermometry

R. Röth et. al, Proc. 5th SRF WS.
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The Danger Zone—100 K

1E11

1E10

1E9

1E8
0 2 4 6 8 10

Eacc (MV/m)

24 hr @ 175 K

24 hr @ 100 K

24 hr @ 75 K

24 hr @ 60 K

Danger zone: 75-150 K

300 K

24 hr @ T

2 K

J. Halbritter, P. Kneisel, K. Saito, Proc 6th SRF WS
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Room-Temperature Cycle

K. Saito & P. Kneisel

A room temperature
cycle removes the Q-virus
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Effect of Etching

• A heavy etch enhances the danger of the Q-virus

Light etch

Q virus free

3 µm etch + 100 K hold

Heavy etch

Q virus free

53 µm etch + 100 K hold

B. Bonin, B., and R. Röth, Proc. 5th SRF WS
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Effect of Niobium Purity

• High purity material is more susceptible

K. Saito & P. Kneisel
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Effect of Grain Size

Equator weld

Equator-weld region

Etched niobium

After fast cooldown

Following warm up to intermediate temp.
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Hydrogen

The most likely culprit is hydrogen:

• Nb-H system undergoes several phase transitions at low temperature, problems 
arise for concentrations greater than 2 wt ppm

• Mobile even at 120 K (300 µm in 1 hour!); not so other impurities
Æ During cooldown hydrogen moves to form high-concentration islands that 

precipitate to bad SC hydrides Æ “weak superconductor”
• Cool quickly to < 100 K to “freeze” hydrogen in place

• Hydrogen likes to sit at “low-electron-density” sites in the niobium
Æ near the surface or at interstitial impurities
Æ for impure niobium, much hydrogen is “bound” and cannot precipitate at the 

surface

• Copious hydrogen is present during BCP or EP and the protective oxide layer is 
missing
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Hydride Precipitation

Back

Disordered phase

Starting point

α + ν

α+ β

α+ η

J.F. Smith, Bulletin of Alloy Phase Diagrams, 4, 39–46 (1983).
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Avoiding the Q disease

How do we „vaccinate“ cavities against the Q disease?

• Buy niobium with little hydrogen to begin with (< 1 wt ppm)

• Etch your cavities with cold (< 15 C) acid

• Use a large acid volume to stabilize the temperature (exothermic reaction!)

• Vaccum-furnace bake at 700-900 C (P < 10-6 mbar) to drive out the hydrogen
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The Q disease: an example

• Tried a new scheme to remove acid without exposure to air
• Was supposed to reduce field emission

• Following RF test showed VERY strong heating
in the lower portion of the cavity

• Presumably, acid removal in lower portion was probably slow

• Rather it diluted the acid slowlyÆ increased reaction rate

• How to solve the problem?
• Heat the cavity to 900 C in a vacuum furnace (P < 10-6 mbar)
• Hydrogen is removed and cavity performance recovered

Low Rs

Low Hc
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Achievable Surface Resistance

• With a carefully prepared cavity, well shielded from the earths field, one can achieve a very
high Q factor

• Surface resistance is around 1.3 nΩ
• SHRIMP predicts a value around 1.8 nΩ for BCS losses

Power dissipation at 1 MV = 25 mW!

Æ Could use an RF signal generator to run this cavity!
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Maximum Field

• What is the intrinsic field limitation of niobium cavities

MP
FE

Q-slope

TB

?

1010

1011

0 10 20 30 40 50
Eacc

Q0

Ideal

Real

Residual resistance

All this to be discussed in 
Tutorial 4b
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Cavity field limits

• Two field limits possible:
• Electric field
• Magnetic field

• Peak fields rather than accelerating field will be the limit

• Æ Ratios play a vital role:

For pillbox
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Electric field limit

• BCS theory does not predict an electric field limit

• In real cavities, a practical electric field limit clearly exists:  Field emission in high electric
field regions (Tutorial 4b)

• To test whether there is a fundamental field limit:
• Design a cavity with relatively small Hpk/Eacc Æ to eliminate any magnetic field limit
• Pulse the cavity with high power (MW) in short time (µs) Æ reach high field before field emission

can cause cavity quenches

• That way 145 MV/m (CW) and 220 MV/m (pulsed) peak fields have been achieved

• So far no fundamental electric-field limit observed
D. Moffat et al., Proc. 4th SRF WS
J. Delayen and K. W. Shepard,
Appl. Phys. Lett., 57(5):514 
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Magnetic field limit

• BCS superconductivity does predict a magnetic field limit

• Intermediate state is lossy in RF fieldÆ quenches cavity (see discussion on trapped flux)

Æ must remain below Hc1?

• Not quite:  Phase transition is first order (latent heat) Æ it takes time to nucleate this (≈ 1µs)

• Æ for short times can „superheat“ the field and remain in the Meißner State

• Theory predicts a superheating field Hsh = 240 mT (@ 0 K for Nb) 
Type-II superconductors

Meißner State

Intermediate State

Normal State

Bc1
(170 mT)

Bc2
(240 mT)

Temperature
Tc
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• Temperature dependance of critical
field is given by
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Magnetic Field Limit

• Let‘s calculate an example with out Pillbox:
• For Nb at 2 K: Bsh ≈ 231 mT
Æ Eacc = 75 MV/m when Bpk = Bsh

Æ Epk = 120 MV/m  already exceeded with other cavities

• „Best real cavity results“ (@ 2 K)
• Eacc = 52,3 MV/m
• Epk = 116 MV/m
• Bsh(229 mT) > Bpk = 197 mT > Bc1 (162 mT)  

• At Bsh:  Eacc = 60.9 MV/m

K.Saito, KEK
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Reaching the magnetic field limit

• To demonstrate the field limit Bpk = Bsh

• Apply short, high-power pulses to reach the maximum field before anomalous losses like
thermal breakdown (due to particles) or field emission can kick in.

• Measure closer to Tc so that the superheating field is lower

• Clearly Hc1 has been exceeded and Hsh reached at higher temperatures

Hc1

Hsh

Measurement at KEK

T. Hays et. al, Proc. 8th SRF WS
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Another „fundamental limit“:  Global Thermal Instability

• Exponential increase of BCS surface resistance with temperature

Æ Danger of thermal runaway (global quench, contrast with local quench)

Æ Field limit is a direct consequence of RF superconductivity

2 K
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GTI in 3 GHz Cavity

3 GHz

J. Graber, PhD thesis, Cornell University, 1993
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Global thermal insability

• To calculate onset need:
• Surface resistance
• Thermal conductivity of niobium
• Kapitza conductivity into the helium bath

κT

K
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Thermal conductivity of niobium

• Thermal energy in a superconductor can be carried by electrons and lattice vibrations
(phonons)
• Cooper pairs do not scatter off latticeÆ cannot transfer heat
Æ only the normal „fluid“ is involved in heat transfer
Æ Largest near Tc, then drops exponentially
Æ Specific heat due to electrons drops as T exp (-Δ/kBT)

• Only few phonons present at low temperature
Æ Electronic contribution dominates near Tc

• Specific heat due to phonons only drop as T3

Æ Phonons dominate at lowest temperatures

• Electronic contribution limited by:
• NC electrons scattering off impurities (concentration determined by the RRR)
• NC electrons scattering off phonons

• Phonon contribution limited by:
• Phonons scattering off electrons
• Phonons scattering off lattice defects, in particular grain boundaries

Electron contribution Phonon contribution

F. Koechling and B. Bonin, Supercond. Sci. Techn. 9 (1996)
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Thermal conductivity of niobium

Æ To maximize thermal conductivity:
• Decrease impurities of Nb (high RRR material)
• Increase the size of the crystal grains

RRR 40= Λ 50祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 100= Λ 50祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 200= Λ 50祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 300= Λ 50祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 500= Λ 50祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 500= Λ 500祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 500= Λ 5 103× 祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

RRR 500= Λ 5 104× 祄=

2.31 4.63 6.94 9.25
1

10

100

1 .10
3

1 .10
4

KsTi( )
watt

mK⋅

Ti

K

Phonon peak
(high purity + large grains)

Rule of thumb: cond(4.2 K) = RRR/4

P. KneiselACCEL
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Kapitza Conductivity

• At the interface from the niobium to the helium, heat is transferred by phonons

• Theory not well understood, but generally dependance follows a T3 to T4 law

• Depends on the surface condition of the niobium

• Typical values are in the range 0.1-1 W/cm2 K

A. Bouchea et al., Proc. 7th SRF WS
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Global Thermal Instability

• Surface resistance, thermal conductivity and Kapitza conductivity are all non-linear
Æ Must simulate GTI

3 GHz

30 MV/m
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Typical thermal conductivity of niobium

Æ Problem largest for
• Cavities made of low thermal conductivity
• Operation at temperatures where the BCS resistance is significant
• High-frequency cavities, > 2 GHz (recall ω2 dependance of resistance)
• Simulations at least partially validated by experiment
Æ for highest gradients will need to stay at lower

frequencies

J. Graber, PhD thesis, Cornell University, 1993
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Cavity modes in real cavities

• In reality one has to calculate the modes with field solvers.  Simply adding beam tubes
already means there are no analytic solutions

• But can still identify the modes

• Length is still chosen according to the previous criterion

• Show a field map in a real cavity
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Different Cavity Designs: Trying to See the Forest for the Trees

NLC
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Different Cavities Designs

• First consideration is the speed of the particles to be accelerated
• The slower the particles (ions) the shorter the gap:

• Application plays an important role (e.g., high current v. high energy)
• Peak fields will play a role
• + other issues that affect cavity geometry and the frequency

• Then consider SC or NC cavities
• For NC cavities must reduce power dissipation with geometry
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Superconducting transition

• Measurement of surface resistance
reveals a SC transition for degraded
cavities
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