Operational Aspects of SC
RF Cavities with Beam

Matthias Liepe

Depariment of Physics, (L ASSF
Cornell University

Matthias Liepe October 13, 2007




And there was beam...

* Two different points of view:

— The SRF cavity view:

* I could function so nicely if the beam wouldn't cause
such a mess...

— The beam view:

* OK, gaining energy is nice, but why do these cavities
also have to disturb me so much?
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The Cavity and the Beam...

Impact on the SRF cavity:

* Beam loading, field
perturbations,
increased RF power

Beam based field
calibration

HOM power handling
and heating issues

Beam induced trips
Cavity performance

with beam
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Impact on the Beam:

* Energy gain, energy
stability

* Emittance growth
— Short range wake fields

— HOM fields, BBU
— Transverse kick fields

* Cavity misalighment

* Asymmetry from
couplers, ...

— RF focusing

e Beam loss due to RF
trips
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Let’s start “simple”: The Fundamental
mode (passband) and the beam

Accelerating field

Beam induced fields: Single bunch and bunch train
Beam loading and optimal loaded Q

Beam induced field perturbations

LLRF field control

Beam based field calibration
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(@) The mode we love so much: TM
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The Accelerating Mode in an
Elliptical RF Cavity
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* N coupled cells

= N TM,,, modes =
TM,,, passband!

Highest frequency mode
(T-mode) is the
accelerating m()de _%75 1280 1285 1290 1295 1300 1305

Amplitude (Zelle #1) [dBA]
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Accelerating Voltage

Accelerating 7~mode:

Accelerating voltage:

_ maximum energy gain _
s charge

Accelerating field gradient:

E

acc

- activecavity length
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Coupling Strength: R/Q

Shunt-impedance: Quality factor:

Vace |

RSh ) 2I:)clis

Note: Here | usethe circuit definition of the shunt impedance.
The so-called accelerator definition of it isa factor of 2 larger!
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Excitation of the Fundamental Mode

Two different sources excite the accelerating

mode:

* RF Generator (power source)

— RF power at the fundamental mode frequency is
coupled into the cavity via the input coupler

e Beam current

— Bunches / bunch train excites the fundamental
mode
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trangmmsmn circulator trans_m1ss1on
line line

/EQ _ )
I

generator

) \ - cc?upler
| 1:N |
genirator: coupler actslike il cavity modeled

P, = 5zol : atransformer: as LCR circuit:

V,=NV, Note: R isthe

shut impedance,
Matthias Liepe |2 = LN Il Nnot Rsurf!




fictitious transformed extzernal load:
enerator current: _
g Zext =N ZO

lg=2/NIyg

= Usethismodel to smulate cavity filling, RF field contral,
beam loading, ...
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Resonance frequency:

|ntrinsic quality factor:

External quality factor:

L oaded quality factor:

Bandwidth of mode:
Cavity detuning:
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Generator and Beam Induced Voltage

» Generator induced voltage (for constant generator power):

R
8 QP,
I°5¢

-
1-i 29

» Beam induced voltage (beam starts at t = 0):

R
26 Q. b | |
Vb (t) — | (1_ e_(a’llz—lA(l))t ) eI Wyt
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Example: FLASH

generator induced
gradient

98]

The generator and
the beam induced
voltage compensate
each other iIf Q, Is
properly adjusted.

gradient [MV/m]

—
LN S

beam induced gradient

1000
time [pLs]

. time

generator power
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Single Bunch
e So far: treated beam as an AC current
* Reality: bunches!

* Accelerating mode volta
single bunch:
g A\/bunch o

* On average, bunch “sees” half of its own
induced field:

Vacc — VA COS¢b - %Vbunch

(fundamental theorem of beam loading)
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Bunch Train

e Need to sum individual bunch induced
voltages:

\/t —

rain ~— Y bunch

— Substructure!

— Envelope given by
previous equation
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* Sum of beam induced and generator induced
voltage is not constant, but shows saw-like
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But there are N TM,,, modes in a
N-cell Cavity...

» Both, the generator and the beam will not only
excite the accelerating TM ;,, mode, but with
small amplitudesalso all other TM y,, modes:

Example: TTF 2x7-cell superstructure

(a) (m-0) mode (b) (5/7m-0) mode (3/ 7TE 0) mode

MM’

L : 0 0
500 1000 1500 200 1000 1500 500 1000 1500
time [us] time [us] time [us]
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field amplitude total accelerating voltage
x10° x10°
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Note:

- Energy transport from one
cell to another requires

excitation of more than one
mode!
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)y RFE Power Requirements with Beam

» The RF power required to maintain an
accelerating voltage V. IS given by:

> — 2 — 2
P =Vf"‘3C 1+ ZBQ@G Ly cosy, | + %+ZBQM Ly sing,
R Q "V @, Q TV
88— Qext acc acc /
Q beam phase

» From this one can calculate, that the minimum
RF power isrequired If:

optimal loaded Q: Qupi " (R All power is

\ transferred to the
beam (no reflected

. . . R 1, .
optimal cavity detuning: ) power)
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Example 1: Cornell ERL 2-cell Cavity (on-
crest acceleration):

== 1.2 MV, 100 mA

— 1MV, 100 mA
0.8 MV, 100 mA
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Example 2: Cornell ERL Main Linac

ERL: = No effective beam loading in main linac!
(accelerated and decelerated beam compensate each other)
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Beam induced Field Perturbations

Beam current modulations
Bunch to bunch charge fluctuations

Return phase fluctuation of the decelerated beam
in and ERL

Potential instabilities in storage rings (coupling of
energy and path length)

Pulsed beam transients (FLASH, ILC, SNYS)

Excitation of other passband modes

= Beam energy fluctuation!
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(&) Example 1: Bunch Charge Fluctuations

-' J

bunch charge fluctuations = beam loading fluctuations
= correlated amplitude and phase fluctuations

Example: pulsed sc proton linac (A. Mosnier et al.)
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Example 2: Beam Transients
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@3) Example 3: Excitation of Passband Modes (1)

Example: TTF/Flash 9-cell cavity
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"‘%L?E’)J Example 3: Excitation of Passband Modes (I)

T s

Example: TTF 9-cell cavity with 1 MHz beam
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¢ Tuners ON
+ Tuners OFF

. 0 1 —Poly. (Tuners OFF) l
Cavity tuners need to —pol. (TEEEEON
HEn mﬂ s

y = 00312 + 0.0635x + 0. 2767/

o
o

adjust the cavity
detuning to its optimal
value to compensate
for the reactive loading

RF Power (kW)
o
(o]

I

S
y= -0.0041x* + 0.0664x + 0.2829

o
(N

=
05 10 15 20 25 30 35 40
Beam Current (mA)

Tom Powers, Chris
Tennant; TINAF FEL
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Field Stability Requirements

e Different accelerators have different
requirements for field stability!

* approximate RMS requirements:

— 1% for amplitude and 1 deg for phase (storage
rings, SNS)

— 0.1% for amplitude and 0.1 deg for phase (linear
collider, ...)

— down to 0.01% for amplitude and 0.01 deg for
phase (XFEL, ERL light sources)
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RF field probe

* Measure cavity RF field.

* Derive new klystron drive signal to
stabilize the cavity RF field.

* Derive new frequency control signal.
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:(%"5);- LLRF Control: A complex System

RED b9

RF power

master amplifier

oscillator actuator power

I A&P

for./ref] freq. tuner
to LO power
‘ X<+ ‘
LO

transmission

=

down
converter

cavity
field
digital/analog feedback controller detector

Many connected subsystems...
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LILRF Hardware

Virtex |1 FPGA
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Perturbation Compensation: Feedback and
Feedforward

e Active Control of Perturbations

— Feedforward: (fixed or adaptive)

* Vibration signals

e Beam current
* HV PS ripple

* Klystron drive
* Frequency tuner drive

— Feedback:

* Measured cavity field

* Klystron output * Klystron drive

* Cavity detuning * Frequency tuner drive
* Beam energy

* Bunch length
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Achieved Energy Stability: TTF/FLASH
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zgg?f Achieved Energy Stability: TTF/FILASH

ED B
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beam transients in pulsed mode operation
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(&Y ERL hioh Q, Cavity Test Operation
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Beam Based Calibration

beam induced transient Module 2

(open loop)

e
time

beam induced transient

field decay

for At <<, !

AV'd:

In

cavity filling
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(&) Sctting the RF Phase at SN'S (I)

Qi

e A beam based measurement must be done to initially set each cavity RF
phase setpoint

e Scan the cavity phase of a cavity 360, and observe the resultant change in
the Time of Flight (TOF) between 2 downstream detectors
— Compare this difference with a model calculations.
— Gives the input beam energy, cavity voltage and RF phase offset calibration
— Need good relative phase measurements from the detectors (~ 1degree!)

e Scan each cavity sequentially
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{8) Setting the RF Phase at SNS (II)

Tis

Example SCL Phase Scan

Black line = measurement fit
Dot = model

Red = cosine fit
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Qi

8 Sctring the RF Phase at SNS (I1D)

SCL Tune-up - Linac Energy Gain is

Understood and Predictable

Predicted - Measured Energy Gain

y =116 2007
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LLRF Cable i
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Energy Gain per Cavity Prediction
Error
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Frequency

e Energy gain per cavity is predictable to a few
100 keV and distributed about 0.

¢ Final energy is predictable to within a few MeV
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Measured beam phase [deg]

Field Calibration based on Single Bunch

Transients
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More cavity eigenmodes: Higher-Order-
Modes

Beam excitation

HOM heating issues

Beam based HOM damping measurements

HOM based BPM
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l%li.gb er-Order-Mode Excitation

The bunched beam excites higher-order-modes
(HOMS) in the cavity.
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* Short range wake-field: Fields inside the bunch and
just behind it

* Long range wakes (ngher-Order-Modes)

*Monopole modes: RF heating
and longitudinal emittance
dilution

*Dipole modes: transverse
emittance dilution and beam
break-up

TM110: dipole mode
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HOM EXxcitation by a Single Bunch

The HOM power excited by a single bunch depends on:
 the HOM s of the cavity (cavity shape),

 the bunch charge (P,ome<d?),

e the bunch length (i.e. the spectrum of a bunch).

100_ Example:

- |
) = 0.6 mm
“ bunen, - — Short bunches
can excite very high
l‘--- frequency modes
80 100

HOM frequency [GHZ]
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HOM Excitation by a Bunch Train

The excited HOM power of a bunch train depends on:
» the HOM excitation by theindividual bunches,

» the beam harmonic frequencies and the HOM
frequencies (resonant excitation is possible!),

» thebunch charge and the beam current

» and the external quality factor, Q. of the modes.
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of losses

normalized integral

50 100 150 200 250
frequency [GHZ]

Bunch excites EM cavity

eigenmodes (Highet-
Order Modes)

wake potential W [V/pC]

Loss Factor:

Single bunch losses o
kKj= 19(s)W (s)ds

determine the average
monopole HOM power | |

per CaVItY‘ F?| — k||QbunchI beam
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(&) Resonance Monopole Mode Excitation

RN N L7 A
i s

Resonant Monopole Mode Excitation if f;;5=N-f, _

If a monopole mode is excited on resonance, the
loss for this mode can be very high:

beam

P = z(gj@ 2 Need strong

HOM damping!

= Example: To stay below 200 W with I=200 mA:
* achieve (R/Q)Q < 2500 €2,

e or avoid resonant excitation of the mode.
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&) FExample: ERL Main Linac Cavity

%
* No high Q monopole modes near first beam
harn160nics (2.6 GHz, 5.2 GaHZ)

10 10

2400 2600 2800 5000 5200
frequency [MHZz] frequency [MHZz]




‘*k;éa)?" Example: HOM Power Heating

-'JJ’\\

 Example: Shielded bellows at KEK-B:

— Comb-type RF shield developed to replace RF
fingers.

Temperature of corrugation

Temperature [deg)

___--_--I— ___II_;I'_____ 1__--__-
Comb-typa |

kL) f.%ﬁ -------
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Calculations
M. Dohlus

5

0.7
1.5/894.4]1.5

20
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quadrupole

bpm
15

absorber

16.2

8.6

7.6]
16[777.9]16.3|
121.4

8.7
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absorption efficiency (including 10%
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Beam pipe temperature increases by beam induced heating
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(&) Beam Based HOM Damping Measurements

q_lf’\‘-

e The beam can be used to excite HOMs on
purpose to search for weakly damped /

-30.0

trapped HOMs. o

J-" 3.063724 GHz (5th dipole passhand)

400 H/ /

TTF / Flash I'CSUItS Wlth ,{w cavity #1 Q=1810"

!'f,-' cavity #7 Q=23 10;
current modulated beam A cavty #8 Q=17 10
reveled several weakly damped S N
b~ !
modes. g o “”Hr e
y W .w *ﬁh‘thw " wwwrw Wh'k "
Some of them where initially h ‘l ',m ¢ h ”W
. . | 1 i y
not predicted by numerical 00| mf il \1 'rq ﬂ w fi M
HOM calculations! 4000 L
0.0000 0.0010 0. DUQD 0. '[]03{1 0.0040 0.0050
time (s)
videband BPM
16MeV  dogleg magnet P I MV/ e
8-cavity TTF module (2 MV/m) -l 32 MeV

||||||” : >
L JK
= EEREREY IS

L/
spectrum analyser () HOM couplers spectrum analyser ()




@) Cavity HOMs can be used as a BPM

Cavity 1, HOM Coupler 1, TE111_6

‘ i Angular scan resolution
' = : W4 and accuracy < 50 prad

H1GUN = -0.183 A
\ H3GUN = -0.119 A
x

o
=}
=}
®

=
o
S
(=]

HOM amplitude [V]

Relative position resolution
~ 4 pm

h

‘0
=
c
>
o
S
S,
5]
S
S
=
a
S
@©
=
o
I

o

0 1
Transverse beam offset [mm]

(cf. M. Ross and J. Frisch).
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Cavity Performance and Performance
Degradations

- Some Examples -
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Linac Cavity Performance

* SRF cavity performance can change over
time:

— “Dust” can propagate through beam pipe into
cavity (beam fields)

— Field emitter can turn on suddenly
— Special events (vacuum leaks...)

— Collective effects
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Example 1: FLASH Linac

BC2

ACC3 ACC5 ACC6




Experience from FLASH

* Recent measurements show that there is basically
no degradation in gradient vs. time.

 Never had vacuum failures or dirt/dust
contaminating the cavities. Also no problems after
conditioning etc.

Conditioned state is preserved also after some time

of operation and after some time off.

So far, there was no need to replace modules due
to degradation or failure (but destroyed tuning
motots)

—> Whole machine is assembled ¢“dust free”!
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@) FLASH: Vector Sum Control!

R

ACC 6 ACC5 ACC 4 ACC 3 ACC 2 ACC1 RF-Gun

I.I-7<—I—I—-I—I—I—I—I—I—I—l — L L L LLI L L L LI I ILII11]

new, XFEL-type
RF power distribution

Kly 4 (10 MW)
- =N Kiy2(5MW) | Kiy3 (5 Mw)

Kly 5 (5 MW) '.- _.-
=

* Need to adjust power distribution according to
cavity performance, or weakest cavity will limit all
other cavities!!
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FILASH Operation

module cavity E.cc IMV/m] atteigté?tor comment

1,2,3,4 13 — capture section, lower gradient

56,8 20 .

7 14 too high FE

3,4,5,7,8 23 limited at 24 .. 25 MV/m

1 21 guench

2 16 guench

6 18 qguench
1 25 limited at 25.5 MV/m
1... 23 limited at 23.5 MV/m
1 25 limited at 26.0 MV/m
1 32 XFEL type limited at 33.0 MV/m

5,6 21 RF power limited at 22.0 MV/m

7,8 26 distribution limited at 27.0 MV/m
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0 -

cavity 12345678123456781234567812345678123
module ACC1 ACC2 ACC3 ACC4 A



Module 6 at CMTB
Meas. Qo/Eacc average gradient 10Hz 500/800us
3.0E+10

2K 19-Dec-06
B 2K 21-Feb-07

2.5E+10 —m 2K 28-Feb-07 FB/piezo ' T 1.6K
o & 18K 1-Mar-07 ' | i

o
2.0E+10

A 155K 1-Mar-07

m 2K 9-Mar-07

¢ 18K 9-mar-07 . ||:
A 159K 9-mar-07

1.0E+10
25 Eacc [MV/m] 30
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Example 2: SNS

Designed to operate at 2.1 K

(superfluid helium)
% =

Sk 2

'v-- ’
- Vol Return end can

-
Space frame

Helium vessels #i" L

s \\

Supply end can

Fundamental power
couplers
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Cavity Limitations | - Field Emission
(radiation—> heating)

Electrons emitted from s
A RAI S(acs Radiation ~ constant
J throughout the RF pulse

Fast channel (Plot type)

PM Radiation
detector

v T T T T | ST T TTT1T I
'I(][ 'I'H[] )[](] 250

Sanple (1 wnit =

 The primary cavity gradient limitation
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Beam pipe
Temperature

*Field Emission +

electrons from cavity coupler interaction;
steady state electron activity + sudden burst
affects other cavities
electron landing place (relative phase, amplitude)
leads continuous gas activity, even though all signals look quiet
hits intermediate temperature region (5-20K); H2 evaporation (burst of gas)
redistribution of gas—=> changes cavity/coupler conditions

Flange T
Coupler or Quter T

Ex.

CM13 individual limits; 19.5, 15, 17, 14.5

CM13 collective limits; 14.5, 15, 1%, 10.5 at the present phase settings
c

—

/‘|\,I If—‘\ll I‘,-r\ T T YT TN I/‘[\ ARVARY, T
| | ] ITI ITI HI| \ 1] \ | ! \/

L) i I\ ikl | g \ 1 ."I | ) ,n. 1
L ZANFAN VANV PAN D) AFANFANPR L =

=
U E—

=

|=_'F=J'|- @, -

eVl

=
U
T
g




(&) SNS: HOM Loop-Coupler Problems

T s

HOM Coupler (subcomponent concern |)

Electric Field e When Q>104%5, there’s a concern.
— but the probability is very low

e Extra insurance
e Coaxial type notch filter scaled from TTF was chosen and installed.

e Low power tests confirmed its functionality
— Damping; dangerous modes to have Q<~10"4

HOM can i .
. o Damage/deterioration

HOM Hypothesis;

Feedthrough  jnteractions between
electronic activity (MP, FE)
+ fundamental mode standing wave
(from stray field)

Should reevaluate
advantages vs. disadvantages
Since HOM coupler in SNS is
Not a critical device
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Matthias Liepe

[%2]
Q
=

>

@
O
Y—

o

S

]
o)

=

=)

P

x;@rﬁ% SNS: Operating Temperature (1)

2 K Open loop from 75 cavities tested in 2005

H 4 K Open loop from 79 cavities tested in 2005

16 18 20 22 24 26
Eacc (MV/m)
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3 35
Operating Temperature (K)

October 13, 2007

Z@f SNS: Operating Temperature (11)

For SNS, operation at
4.2 K is overall more
economical up to about
Y, of the design beam
power

(if achieved by
reducing repetition rate
to 30 Hz)




Example 3: KEK-B, Long Term Cavity
Operation (1)

(1) maximum accelerating voltage T Furuya S. Mitsunobu

o All cavities can provideVc>2 MV after 7 years oper ation.
e Vc of D11C degraded after the vacuum trouble.
» Vc of D11B degraded after changing the coupling of the input coupler.

SCC D10 V¢ max 060308 SCC D11 V¢ max 060308

- D1I]B|[CPL dlscgarge&stup:} | : : E ] - gD“Cﬂbak“ﬂ“h'El‘ : D11n|:HOI'u'I Ieak&fx}i

V¢ max(Mv)
Ve max(Mv)

5 [EERNE SoR et e 1 s N o S

{LABCDj D1I]D7'

. e CPL gasket: {D1BD,D1 mB,E,D}— | —e—Rave maxi"”‘*’? £FL gasketfmﬂn mm B; C-El}-
| —8— LAVE maxihhg E bmn Ieaked &ﬂxed E F| — 8 RB Y maxMy) : D1I]A Ieaked &f‘xed 5 ]
| —®— LB %o maxihv) E : ] E | —— RC Ve maxihdy) : : ]
HE| T LC Ve manihl) e o R P —&—RD Ve max(y) [ : ; : : ]
[ | —— LD %o maxiii) : i ; : : ] C : : i : ; ]

s L e O 1 O B ]t ey Pliin nflin non linin o dl ania [binta noft adain Hontn noll nintn e q
1999 2000 2001 2002 2003 2004 2005 2006 1999 2000 2001 2002 2003 2004 2005 2006

date

Date
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Example 3: KEK-B, Long Term Cavity
Operation (11)

(2) Intrinsic Q

Unloaded Q at 2MV (8MV/m) has gradually degraded to 3-5x108.
Huge amount of out gas from theferrite dampers has degraded the
cavity performance?

Baking may recover the performance, but we haveto consider the
risk of vacuum leak at the indium seals.

The Q at the operating voltage (1.4MV) still kegps Q >1x10°.

T. Furuya, S. Mitsunobu

hlstory of Q_060308 history of Q_ 060308

310° e 310°
I : RRARRES I A sllJ'.n.-cmuldulm.-rrI ] Il ! sluwcuu'lduwn !
55100 E g g i P ] 25100 Fi § Dﬂcueammume) : ' >
. —— LA Q0GR : CF'i_ gasket‘{Dﬂ]D P11a | ? : 1= HER':m ! Efﬁnﬁiﬁ}'i'ﬁfﬂ 1B

o 210 B | 8 e | M D10a IeakEﬂ afixefl o, oqp® LiglAR i L MRl ]
= H —k— LD-aogzh | =
o™

b S 1.5 10° RN SO AN SN N R S B
4] (]
o o

G G 1P g - AT Y O O U \ | SR F 1

| —a— RA-QDCMY)

5 10° b| —®— RB-00(2MY) : : ] T

| —e— RC-Qo(zhyy [t B e i

| ——RD-000m) | | : : e ]

T . . R PP T [ e ey
1993 2000 2001 2002 2003 2004 2005 2006 1998 2000 2001 2002 2003 2004 2003 2006
DATE T 4 DATE T 4
offset (5 -->8)
T L=1E+34
D11B (vc test) D11B (Vc test



miui SR e _ Caused by RF
SESNNY S BRRESARAERE ALY » Beam L oss

others

JoiDEEEEE
o fmlml=pe] |

Mumber of aborts / day
Mumber of aborts [ day

* The cause of every beam abort is analyzed immediately.
* Caused by beam loss (60%), RF (28%), or others (12%).

* Average number of beam aborts in two rings caused by any
RF reasons is about once or twice /day.
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* See changes in cavity performance vs. time

* Not all of these changes are correlated to external

disturbances (warm up, ..)!

____________

'
e e 5 . T ST

i Rt R o s i

In(1/interval) (s™)

_________________

1995 vs. 2003

0 5 10 15 20
Count

gradient (MeV/m)



CEBAF: Type of Cavity Performance
Limitation

Other __

Quench
1 Watt FE loading

Waveguide vacuum

Arc rate limited

\_

— 1 rad/hr from field emission
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CEBAF Downtime (1999)

CEBAF Downtime Contribution by System - FY99

SRF (arc trips
| | ; , Other than thearc
Other Operations

v trips, the SRF
acuum _

Control Net system directly
contributed 48
minutes (lessthan
0.1%) of the 1620
hour s of

| unscheduled
Software downtime.

Plant

Cryo RF - controls

Guns
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Emittance Dilution caused by SRF
Cavities

- Some Examples -
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Example 1: Transverse BBU in ERLs

* In an ERL a feedback system formed between cavities

and the beam is closed. = Instability at sufficient high
currents (BBU threshold)!

a

K’ Cavity with dipole higher-order mode
SRR R QA Y
: B ) i S S L._Lﬂ

* Simple model for instability beam current:

| @ For Igg, > 100 mA, need
BBU (R/Q) Q strong HOM damping (
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Example 2: Coupler Kicks

Input couplers cause transverse, time
dependent kick fields on axis, and thereby
emittance growth. “

Solutions

— Symmetry

— Compensating stub




Example 3: Cavity Misalignment

* Cavity and cryomodule offset and tilt cause
emittance growth

Normalised Emittance Growth vs. Structure Offset Normalised Emittance Growth vs. Cavity Pitch Angle

—— Mean Emi. Growth |
—=— 90% Emit. growth

—eo— NMean Emi. Growth
—=—90% Emit. growth |
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Normalised Emittance Growth (nm)

400 600 800 1000 1200 1400
Structure Offset (um) CAVITY PITCH (urad)

Normalised Emittance Growth vs. Girder Offset

Normalised Emittance Growth
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400 600
Girder Offset (Jam)




]-
4 D=
b —

Insufficiently
damped dipole
modes can cause
emittance growth
and even beam
break-up

BF ’.‘i?::'i' umber
Vertical offset
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Conclusion

SRF Cavity and Beam

What would be one without the other?

If we do it right, they both can be happy...
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