2: Photon Sources and Electron Accelerators
A08 - Linear Accelerators
Paper Title Page
MOXGB2 Commissioning and Operation of 12 GeV CEBAF 1
 
  • A. Freyberger
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.
 
slides icon Slides MOXGB2 [4.359 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOXGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA002 Layout Options for the AXXS Injector and XFEL 1394
 
  • M.J. Boland, Y.E. Tan, D. Zhu
    SLSA, Clayton, Australia
 
  A new injector is being planned for the Australian Synchrotron that is designed to feed both an upgraded storage ring and an XFEL. The desire to fit the AXXS project on the same site as the existing light source presents several layout difficulties. Several options are studied and simulations are performed to check the impact each choice has on the beam performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA029 ARES: Accelerator Research Experiment at SINBAD 1469
 
  • B. Marchetti, R.W. Aßmann, C. Behrens, R. Brinkmann, U. Dorda, K. Flöttmann, J. Grebenyuk, M. Hüning, Y.C. Nie, H. Schlarb, J. Zhu
    DESY, Hamburg, Germany
 
  ARES is a planned linear accelerator for R&D for production of ultra-short electron bunches. It will be hosted at the SINBAD facility, at DESY in Hamburg*. The goal of ARES is to produce low charge (0.2-50pC), ultra-short (from few fs to sub-fs) bunches, with high arrival time stability (less than 10fs) for various applications, such as external injection for Laser Plasma Wake-Field acceleration**. The baseline layout of the accelerator foresees an S-band photo-injector which compresses low charge electron bunches via velocity bunching and accelerates them to 100 MeV energy. In the second stage, it is planned to install a third S-band accelerating cavity to reach 200 MeV as well as two X-band cavities: One for the linearization of the longitudinal phase space (subsequently allowing an improved bunch compression) and another one as a transverse deflecting cavity for longitudinal beam diagnostics. Moreover a magnetic bunch compressor is envisaged allowing to cut out the central slice of the beam*** or hybrid bunch compression.
* R. Assmann et al., TUPME047, Proceedings of IPAC 2014.
** R. Assmann, J. Grebenyuk, TUOBB01, Proceedings of IPAC 2014.
*** P. Emma et al., PRL 92 7 (2004).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA030 Compression of an Electron-bunch by Means of Velocity Bunching at ARES 1472
 
  • B. Marchetti, R.W. Aßmann, U. Dorda, J. Grebenyuk, J. Zhu
    DESY, Hamburg, Germany
 
  ARES is a planned linear accelerator for research and development in the field of production of ultra-short electron bunches. The goal of ARES is to produce low charge (0.2-50pC), ultra-short (from few fs to sub-fs) bunches, with improved arrival time stability (less than 10fs) for various applications, such as external injection for Laser Plasma Wake-Field acceleration. The ARES layout will allow to perform and compare different kind of conventional e-bunch compression techniques, such as pure velocity bunching*, hybrid velocity bunching (i.e. velocity bunching plus magnetic compression) and pure magnetic compression with the slit insertion**. This flexibility will allow to directly compare the different methods in terms of arrival time stability and local peak current. In this paper we present simulation results for the compression of an electron bunch with 0.5 pC charge. We compare the case of pure velocity bunching compression to the one of a hybrid compression using velocity bunching plus a magnetic compressor.
* M. Ferrario et al., Phys. Rev. Lett. 104, 054801 (2010).
** P. Emma et al., PRL 92 7 (2004).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA031 Compression of Train of Bunches with Ramped Intensity Profile at SPARC_LAB 1476
 
  • B. Marchetti
    DESY, Hamburg, Germany
  • A. Bacci
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • E. Chiadroni, M. Ferrario, R. Pompili
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
 
  The production and acceleration of train of bunches with variable spacing in the ps/sub-ps range having ramped intensity profile are interesting to drive a plasma wave in the so-called resonant Plasma Wake-Fields Acceleration (r-PWFA)*. At SPARC_LAB trains having a constant intensity profile have been produced for the first time by using a shaped photo-cathode laser combined with the use of the velocity bunching compression technique**,***,****. If the sub-bunches have ramped intensity, i.e. they have different charge density, the space charge force affects differently the development of the longitudinal phase space of each one of them during the compression. In this paper we present preliminary simulations for the compression of a ramped train of bunches. The differences between the beam dynamics for a train of bunches having constant intensity profile and the ramped train are underlined. We discuss also the possibility of properly tuning the shaping of the photocathode laser to balance the space charge effect.
* SLAC-PUB-3528
** M. Ferrario et al., Phys. Rev. Lett. 104, 054801 (2010).
*** M. Ferrario et al. NIM A 637, S43-S46 (2011).
**** E. Chiadroni et al., Rev. Sci. Instrum. 84, 022703
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA032 Progress in the Injector Upgrade of the LINAC II at DESY 1479
 
  • Y.C. Nie, M. Hüning, C. Liebig, M. Schmitz
    DESY, Hamburg, Germany
 
  A new injection system is under development for the LINAC II at DESY to improve the reliability of the machine and mitigate the radiological problem due to electron losses at energy of hundreds of MeV. It consists of a 100 kV triode DC gun, a 2.998 GHz pre-buncher, a novel 2.998 GHz hybrid buncher, and the dedicated beam transport and diagnostic elements. As the key components, the pre-buncher and the hybrid buncher realize a two-stage velocity bunching process including the ballistic bunching and the phase space rotation. Therefore, they produce a certain number of well-bunched 5 MeV micro-bunches from the input 2 ns-50 ns electron pulse for the downstream LINAC II. The overall upgrade plan, developments of the critical components, as well as the latest beam test results will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA042 Status of the Accelerator Physics Test Facility FLUTE 1506
 
  • M.J. Nasse, A. Bernhard, I. Birkel, A. Borysenko, A. Böhm, S. Hillenbrand, N. Hiller, S. Höninger, S. Marsching, A.-S. Müller, R. Rossmanith, R. Ruprecht, M. Schuh, M. Schwarz, B. Smit, S. Walther, M. Weber, P. Wesolowski
    KIT, Karlsruhe, Germany
  • R.W. Aßmann, M. Felber, K. Flöttmann, C. Gerth, M. Hoffmann, P. Peier, H. Schlarb, B. Steffen
    DESY, Hamburg, Germany
  • R. Ischebeck, B. Keil, V. Schlott, L. Stingelin
    PSI, Villigen PSI, Switzerland
 
  A new compact versatile linear accelerator named FLUTE (Ferninfrarot Linac Und Test Experiment) is currently under construction at the Karlsruhe Institute of Technology (KIT). It will serve as an accelerator test facility and allow conducting a variety of accelerator physics studies. In addition, it will be used to generate intense, ultra-short THz pulses for photon science experiments. FLUTE consists of a ~7 MeV photo-injector gun, a ~41 MeV S-band linac and a D-shaped chicane to compress bunches to a few femtoseconds. This contribution presents an overview of the project status and the accompanying simulation studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA045 Further Investigations on the MESA injector 1515
 
  • R.G. Heine, K. Aulenbacher, S. Friederich, C. Matejcek, F. Schlander
    IKP, Mainz, Germany
 
  Funding: work supported by the German Federal Ministery of Education and Research under the Cluster of Excellence "PRISMA"
The MESA ERL to be build at Mainz in the next years is a multi turn recirculating linac with beam currents of up to 10 mA. The dynamic range of the beam currents demanded by the experiments is of at least two orders of magnitude. This is a special challenge for the layout design of an injector. In this paper we present the current status of the design of the injector linac called MAMBO (MilliAMpereBOoster).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA057 DAΦNE LINAC: Beam Diagnostics and Outline of the Last Improvements 1549
 
  • B. Buonomo, L.G. Foggetta
    INFN/LNF, Frascati (Roma), Italy
 
  The LINAC of the DAΦNE complex is in operation since 1996, both as injector of the e+ e phi-factory, and, since 2003, for the extraction of electron beam to the Beam Test Facility. In the last years, many improvements has been developed in different sub-systems of the LINAC, aiming at a wider, tunable range of beam parameters, in particular the pulse time width and the pulse charge. A long term measurement campaign has been recently started to characterize the LINAC performance after that many sub-systems has been overhauled and improved, starting from RF power (i.e. klystron substitution, modulator re-newing, RF driver layout, SLED tuning) as well as the timing system, magnets, cooling, vacuum, control system and energy/position diagnostics. This work reports the latest results on the optimization of the fully consolidated system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA065 Generation of Multi-bunch Beam with Beam Loading Compensation by Using RF Amplitude Modulation in Laser Undulator Compact X-ray (LUCX) 1576
 
  • M.K. Fukuda, S. Araki, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • K. Sakaue, M. Washio
    RISE, Tokyo, Japan
 
  We have developed a compact X-ray source based on inverse Compton scattering between an electron beam and a laser pulse stacked in an optical cavity at Laser Undulator Compact X-ray (LUCX) accelerator in KEK. The accelerator consists of a 3.6 cell photo-cathode rf-gun, a 12cell standing wave accelerating structure and a 4-mirror planar optical cavity. Our aim is to obtain a clear X-ray image in a shorter period of times and the target flux of X-ray is 1.7x107 photons/pulse with 10% bandwidth at present. To achieve this target, it is necessary to increase the intensity of an electron beam to 500nC/pulse with 1000 bunches at 30 MeV. Presently, we have achieved the generation of 24MeV beam with total charge of 600nC in 1000bunches with beam-loading compensation by using the delta T method and the amplitude modulation of RF pulse. The bunch-by-bunch energy difference is within 1.3% peak to peak. We will report the results of the multi-bunch beam generation and acceleration in this accelerator.
This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE003 Quasi-Traveling Wave RF Gun and Beam Commissioning for SuperKEKB 1610
 
  • T. Natsui
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • Y. Ogawa, M. Yoshida, X. Zhou
    KEK, Ibaraki, Japan
 
  We are developing a new RF gun for SuperKEKB. High charge low emittance electron and positron beams are required for SuperKEKB. We will generate 7.0 GeV electron beam at 5 nC 20 mm-mrad by J-linac. In this linac, a photo cathode S-band RF gun will be used as the electron beam source. For this reason, we are developing an advanced RF gun which has two side coupled standing wave field. We call it quasi-traveling wave side couple RF gun. This gun has a strong focusing field at the cathode and the acceleration field distribution also has a focusing effect. This RF gun has been installed in the KEK J-linac. Beam commissioning with the RF gun is in progress.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE007 Measurement of Temporal Electric Field of Electron Bunch using Photoconductive Antenna 1623
 
  • K. Kan, M. Gohdo, T. Kondoh, I. Nozawa, A. Ogata, T. Toigawa, J. Yang, Y. Yoshida
    ISIR, Osaka, Japan
 
  A temporal electric field profile, which is a radially polarized terahertz (THz) pulse from an electron bunch, was measured by a large-aperture photoconductive antenna (PCA) with micro-structured concentric electrodes* for the detection of THz pulses. Photo-induced charge carriers were generated by irradiation of femtosecond laser pulses on semiconductor plane of the electrodes on the PCA. Time-domain measurement of coherent transition radiation (CTR) was conducted by the measurement of electric-field-induced current output from the PCA with sweeping the timing of the laser irradiation. The measurements on femtosecond electron bunches of 32 MeV and >80 pC will be reported.
* K. Kan et al., Appl. Phys. Lett. 102, 221118 (2013).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE014 An X-Band Linac with Tunable Beam Energy 1644
 
  • L. Zhang, H.B. Chen, Y.-C. Du, Q.X. Jin, J. Shi, C.-X. Tang, P. Wang, Z. Zhang
    TUB, Beijing, People's Republic of China
 
  The low-energy X-band linac has a wide application in medical imaging. In this paper, an X-band linac is designed to produce beam energy between 0.5MeV and 1.5MeV, and the output beam energy is continuously adjustable within this range. Two sections of linacs are combined and powered by a single microwave source. During the experiment, we can tune the RF phase and amplitude of the second section of the linac, the electron beam can see either acceleration or deceleration, which tunes the output energy. This paper presented the production of the whole linac system, as well as the measurement of the continuously-adjustable beam energy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE080 First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab 1831
 
  • D.J. Crawford, C.M. Baffes, D.R. Broemmelsiek, K. Carlson, B.E. Chase, E. Cullerton, J.S. Diamond, N. Eddy, D.R. Edstrom, E.R. Harms, A. Hocker, C.D. Joe, A.L. Klebaner, M.J. Kucera, J.R. Leibfritz, A.H. Lumpkin, J.N. Makara, S. Nagaitsev, O.A. Nezhevenko, D.J. Nicklaus, L.E. Nobrega, P. Piot, P.S. Prieto, J. Reid, J. Ruan, J.K. Santucci, W.M. Soyars, G. Stancari, D. Sun, R.M. Thurman-Keup, A. Valishev, A. Warner, S.J. Wesseln
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE081 Model of Dark Current in SRF Linac 1834
 
  • A.I. Sukhanov, A. Saini, N. Solyak, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
 
  Currently, few linacs based on 9-cell TESLA-type SRF cavities are being designed or bult, including XEFL, LCLS-II and ILC. Dark current electron generated by field emission in SRF cavities can be captured and accelerated in the linac up to hundreds MeV before they removed by focusing magnets. Lost dark current electrons interact with the materials surrounding SRF cavities and magnets, produce electromagnetic showers and contribute to the radiation in the linac tunnel. In this paper we present a model of dark current in a linac based on TESLA cavities. We show preliminary results of the simulation applied to ILC main linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA026 Status of the MaRIE X-FEL Accelerator Design 1894
 
  • J.W. Lewellen, K. Bishofberger, B.E. Carlsten, L.D. Duffy, F.L. Krawczyk, Q.R. Marksteiner, D.C. Nguyen, S.J. Russell, R.L. Sheffield, N.A. Yampolsky
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the MaRIE program at Los Alamos National Laboratory, under contract DE-AC52-06NA25396
The Matter-Radiation Interactions in Extremes (MaRIE) facility is intended to probe and control the time-dependent properties of materials under extreme conditions. At its core, the “MaRIE 1.0” X-FEL is being designed to deliver pulse trains of ~1010 42 keV photons, with a minimum bunch spacing of 2.4 ns, enabling time-dependent studies particularly of mesoscale phenomena. The X-FEL accelerator is also intended to deliver a series of 2 nC electron bunches to enable electron radiography concurrently with the X-ray pulse train, so as to provide multi-probe capability to MaRIE. In 2014, the reference design for the MaRIE X-FEL 12 GeV driver linac was changed from an S-band normal-conducting to an L-band superconducting linac to accommodate pulse trains up to 100 μs in duration. This paper does not present a complete solution for the MaRIE linac design; rather it describes our current reference design, achieved parameters, areas of concern and paths towards mitigation of identified issues.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYC3 Commissioning and Operation of the ARIEL Electron Linac at TRIUMF 2444
 
  • M. Marchetto, F. Ames, Z.T. Ang, R.A. Baartman, I.V. Bylinskii, Y.-C. Chao, D. Dale, K. Fong, R. Iranmanesh, F.W. Jones, D. Kaltchev, J. Kavarskas, P. Kolb, S.R. Koscielniak, A. Koveshnikov, M.P. Laverty, R.E. Laxdal, L. Merminga, N. Muller, R.R. Nagimov, R.B. Nussbaumer, T. Planche, M. Rowe, S. Saminathan, V.A. Verzilov, Z.Y. Yao, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  Funding: Funded under a contribution agreement with NRC (National Research Council Canada). Capital funding from CFI (Canada Foundation for Innovation).
ARIEL is the new TRIUMF facility for production of radioactive ion beams that will enable the delivery of three simultaneous RIB beams to the ISAC experimental stations. Two additional target stations will produce beams by using either a 50 kW proton or from 500 kW electrons via photo-fission. The electron beam driver is going to be a 50 MeV 10 mA CW superconducting electron linac. The first stage of the e-linac installation is completed and commissioning is underway. The paper will present the e-linac design characteristics, installation, commissioning strategy and current results.
 
slides icon Slides WEYC3 [13.765 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEYC3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBD1 12 GeV CEBAF Transverse Emittance Evolution 640
 
  • T. Satogata, Y. Roblin, M.G. Tiefenback, D.L. Turner
    JLab, Newport News, Virginia, USA
 
  We present commissioning results of measurements of beam phase space evolution of the newly commissioned 12 GeV CEBAF accelerator. These measurements range over two orders of magnitude in energy for a non-equilibrium beam, from near the photocathode to the diamond bremsstrahlung target for the GlueX experiment. We also compare these measurements to modeled beam evolution, and emittance growth expectations driven by synchrotron radiation.  
slides icon Slides WEBD1 [4.297 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEBD1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)